
Institute of Computer Engineering and Computer Architecture
Prof. Dr. rer. nat. habil. Hans-Joachim Wunderlich

Pfaffenwaldring 47, 70569 Stuttgart

Master Project Nr. 3161

Evaluation of Advanced
Techniques for Structural

FPGA Self-Test

Mohamed Abdelfattah

M S C T H E S I S
in partial fulfillment of the requirements

for the degree of Master of Science

Supervisors : Dipl.-Inf. Michael Imhof
Dipl.-Inf. Michael Kochte
Dipl.-Inform. Claus Braun

Examiner : Prof. Dr. rer. nat. habil. Hans-Joachim Wunderlich
Start Date : March 01, 2011
Submission Date : August 31, 2011
CR Classification : B.5.2, B.6.1, B.8.1, B.8.2, C.4
Study Program : M.Sc. Information Technology (INFOTECH)

To my mom and dad

Abstract

This thesis presents a comprehensive test generation framework for FPGA logic

elements and interconnects. It is based on and extends the current state-of-the-art.

The purpose of FPGA testing in this work is to achieve reliable reconfiguration for a

FPGA-based runtime reconfigurable system. A pre-configuration test is performed

on a portion of the FPGA before it is reconfigured as part of the system to ensure

that the FPGA fabric is fault-free. The implementation platform is the Xilinx

Virtex-5 FPGA family.

Existing literature in FPGA testing is evaluated and reviewed thoroughly. The

various approaches are compared against one another qualitatively and the approach

most suitable to the target platform is chosen. The array testing method is employed

in testing the FPGA logic for its low hardware overhead and optimal test time. All

tests are additionally pipelined to reduce test application time and use a high test

clock frequency. A hybrid fault model including both structural and functional

faults is assumed.

An algorithm for the optimization of the number of required FPGA test config-

urations is developed and implemented in Java using a pseudo-random set-covering

heuristic. Optimal solutions are obtained for Virtex-5 logic slices. The algorithm

effort is parameterizable with the number of loop iterations each of which take

approximately one second for a Virtex-5 sliceL circuit.

A flexible test architecture for interconnects is developed. Arbitrary wire types

can be tested in the same test configuration with no hardware overhead. Further-

more, a routing algorithm is integrated with the test template generation to select

the wires under test and route them appropriately.

Nine test configurations are required to achieve full test coverage for the FPGA

logic. For interconnect testing, a local router-based on depth-first graph traversal is

implemented in Java as the basis for creating systematic interconnect test templates.

Pent wire testing is additionally implemented as a proof of concept. The test clock

frequency for all tests exceeds 170 MHz and the hardware overhead is always lower

than seven CLBs. All implemented tests are parameterizable such that they can be

applied to any portion of the FPGA regardless of size or position.

v

Contents

Abstract v

List of Figures xi

List of Tables xiii

List of Abbreviations xv

1 Introduction 1

1.1 Motivation and Objectives . 1

1.2 Reliability Threat . 2

1.3 Thesis Organization . 2

2 Background 5

2.1 FPGA Overview . 5

2.1.1 FPGA Architecture . 5

2.1.2 Configurable Logic Blocks . 6

2.1.3 Switch Matrix and Interconnect 7

2.2 Xilinx Virtex-5 FPGA . 8

2.2.1 CLB Architecture . 9

2.2.2 Programmable Routing Resources 9

2.3 Built-In Self Test . 12

2.3.1 FPGA Testing . 12

2.3.2 Test Terminology . 13

3 State of the Art 15

3.1 CLB Test Approaches . 15

3.1.1 CLB Test with Response Compaction 16

3.1.2 Array-based CLB Test . 17

3.1.3 Memory Readback . 22

3.1.4 Test Configuration Minimization 23

3.1.5 Summary of CLB Test Approaches 25

3.2 Interconnect Test Approaches . 25

3.2.1 Basic Interconnect Testing . 25

3.2.2 Advanced Interconnect Testing 27

4 Fault Model 33

4.1 The Cell Fault Model . 33

4.1.1 Definition and Assumptions 34

4.1.2 Example Fault List Derivation 34

4.1.3 Lookup Table: LUT Mode Fault List 35

vii

viii Contents

4.2 Functional RAM Fault Model . 36

4.3 Functional Shift Register Fault Model 37

4.3.1 Flip-Flop Fault List . 37

4.4 Stuck-At Faults . 38

4.5 Complete CLB Fault List . 39

5 CLB Test 43

5.1 CLB Test Architecture . 43

5.1.1 Test Methodology . 44

5.1.2 BIST Architecture . 45

5.1.3 Testing Iterative Logic Arrays 46

5.2 CLB Subcomponent Tests . 48

5.2.1 Lookup Table - LUT mode 49

5.2.2 Lookup Table - SR mode . 50

5.2.3 Lookup Table - RAM mode 51

5.2.4 Multiplexer . 52

5.2.5 Fast Carry Chain . 52

5.2.6 Latches . 53

5.3 Global CLB Test Optimization . 54

5.3.1 Generalization for CLBs . 54

5.3.2 Set-Cover Heuristic . 55

5.3.3 TC Optimization Shortcomings 56

6 Interconnect Test 57

6.1 Interconnect Test Architecture . 57

6.1.1 Generic Test Architecture . 58

6.1.2 Test Response Compaction 58

6.1.3 Test Pattern Generator and Output Response Analyzer . . . 59

6.2 Local Router . 60

6.2.1 Routing Algorithm . 60

6.3 WUTs Selection . 63

6.3.1 Systematic WUTs Selection 63

6.3.2 Automatic WUTs Selection 64

7 Implementation and Results 67

7.1 Design Tools . 67

7.1.1 Xilinx Design Language . 67

7.1.2 RapidSmith Java Framework 68

7.2 CLB Testing . 68

7.2.1 CLB PRET Tool Flow . 69

7.2.2 CLB Test Results . 70

7.3 Interconnect Testing . 74

7.3.1 Interconnect PRET Tool Flow 74

7.3.2 Interconnect Test Results . 75

Contents ix

8 Conclusion 77

8.1 Summary and Main Contributions 77

8.2 Future Work . 78

A XDL Syntax 81

B Virtex-5 Interconnects 83

B.1 Pin Naming Conventions . 83

B.2 Interconnect Illustrations . 83

Bibliography 89

Declaration 95

List of Figures

1.1 A runtime reconfigurable system implemented on an FPGA 2

2.1 FPGA schematic diagram showing basic building blocks 6

2.2 A four-input FPGA multiplexer . 7

2.3 A two-input LUT . 7

2.4 Three types of FPGA programmable switches 8

2.5 Island style FPGA interconnects and possible implementation of a PIP 9

2.6 Virtex-5 sliceL diagram (from [5]) . 10

2.7 Virtex-5 sliceM diagram (from [5]) 11

2.8 BIST setup . 12

3.1 Testing scheme using parity tree for test response compaction 16

3.2 Multiplexer testing configurations . 18

3.3 LUT testing configurations . 18

3.4 Three one-dimensional arrays of three CLBs 19

3.5 The pseudo shift register . 20

3.6 Testing the clock enable . 20

3.7 One dimensional ILA of length 3 . 21

3.8 Interconnection of pipelined CLBs in an array 22

3.9 a) A partial chain, b) Connection of 3 partial chains 22

3.10 A simple module of multiplexers . 24

3.11 TC coverage of testability conditions 25

3.12 Three test configurations for non-redundant fault coverage 26

3.13 Test structure for testing PSMs using max-flow approach 28

3.14 Graph representation of east interconnects inside/between three

switch matrices . 30

3.15 Schematic of the interconnect routing structure 31

3.16 k-partite graph representing interconnects 31

4.1 m-input, n-output cell . 34

4.2 XOR gate implementation and abstraction to a black box 35

4.3 a) Virtex-5 LUT and b) details of its structure 35

4.4 Functional view of a shift register . 37

4.5 A Virtex-5 flip-flop . 38

4.6 XOR gate stuck-at faults . 38

4.7 2-input multiplexer stuck-at faults 39

4.8 Stuck-at faults in fanouts . 39

4.9 Overview of the hybrid fault model 39

4.10 Simplified “quarter” CLB circuit diagram 40

5.1 Container test procedure . 44

xi

xii List of Figures

5.2 a) Empty container and b) configured into arrays 45

5.3 a) Comparison-based ORA for b) four and c) three array outputs . . 46

5.4 a) Partially pipelined and b) fully interleaved/pipelined CLB arrays 47

5.5 A one dimensional logic array of length R 47

5.6 Parity checker cell and array . 48

5.7 Simplified “quarter” CLB circuit diagram 49

5.8 Functional view of a 2-input LUT . 50

5.9 LUT testing configurations . 50

5.10 Interconnection of LUTs (SR mode) with flip-flops in arrays 51

5.11 TCs for a 4 input multiplexer . 52

5.12 Two-stage carry chain under test . 52

5.13 Pipelined test setup for the carry chain 53

5.14 a) Scan chain of latches and b) two non-overlapping clocks for latch

test . 53

5.15 Circuit diagram with operational modes modeled as multiplexers . . 55

6.1 Interconnect test configuration . 58

6.2 Interconnect response compaction . 59

6.3 One PSM in an interconnect test configuration 59

6.4 a) Interconnect test setup and b) array representation of nodes . . . 60

6.5 Three different permutations when routing group 1 61

6.6 Illustration of routing conflicts and allowed fanouts 63

6.7 Screen shot of WUT routing (taken from FPGA Editor) 63

6.8 Systematic test for double east wires 64

7.1 Xilinx design cycle with XDL . 68

7.2 CLB test implementation flow . 69

7.3 Effect of vertical scaling of container size on the test clock frequency 72

7.4 Effect of horizontal scaling of container size on the test clock frequency 73

7.5 Screen shot of a container under test (taken from FPGA editor) . . . 73

7.6 Interconnect test implementation flow 74

7.7 Screen shot of a container under test (taken from FPGA editor) . . . 75

8.1 Block diagram of possible FPGA CAD test software 78

B.1 Virtex-5 global wires . 84

B.2 Virtex-5 long wires . 84

B.3 Virtex-5 pent wires . 85

B.4 Virtex-5 pent wires in diagonal connections 85

B.5 Virtex-5 double wires . 86

B.6 Virtex-5 double wires in diagonal connections 86

B.7 Virtex-5 double wires . 87

List of Tables

2.1 Virtex-5 wire properties . 10

4.1 List of cell faults for the XOR gate 35

4.2 Summary of CLB faults . 41

5.1 Flow table for XOR cell . 49

5.2 March tests coverage summary . 51

5.3 Boolean encoding of LUT TCs . 54

6.1 Number of paths for node pairs from group 1 61

7.1 Description of CLB TCs, BIST overhead and CLK frequency 70

7.2 March tests configuration summary 71

xiii

List of Abbreviations

ATE Automatic Test Equipment

BIST Built-In Self Test

BUF Buffer

CAD Computer-Aided Design

CE Clock Enable

CF Coupling Fault

CFdyn Dynamic Coupling Fault

CFid Idempotent Coupling Fault

CFin Inversion Coupling Fault

CFM Cell Fault Model

CIM Configurable Interface Module

CLB Configurable Logic Block

CLK Clock

CUT Circuit Under Test

DFS Depth First Search

DRC Design Rule Check

DRF Data Retention Fault

FF Flip-Flop

FF Functional Fault

FPGA Field Programmable Gate Array

HDL Hardware Description Language

HW Hardware

ILA Iterative logic arrays

IOB Input/Output Block

IP Intellectual Property

xv

xvi List of Abbreviations

JTAG Joint Test Action Group

LF Linked Fault

LFSR Linear Feedback Shift Register

LUT Lookup Table

MUX Multiplexer

NCD Netlist Circuit Description

NGD Native Generic Database

ORA Output Response Analyzer

PAR Place and Route

PLB Programmable Logic Block

PR Partial Reconfiguration

PSM Programmable Switch Matrix

RAM Random Access Memory

RST Reset

SA-0 Stuck-At Zero

SA-1 Stuck-At One

SAF Stuck-At Fault

SCF State Coupling Fault

SF Structural Fault

SOF Stuck-Open Faults

SR Shift Register

SRAM Static Random-Access Memory

TC Test Configuration

TF Transition Fault

TPG Test Pattern Generator

WUT Wire Under Test

XDL Xilinx Design Language

Chapter 1

Introduction

Contents

1.1 Motivation and Objectives . 1

1.2 Reliability Threat . 2

1.3 Thesis Organization . 2

1.1 Motivation and Objectives

To speed up particular applications, algorithm-specific hardware (HW) accelerators

are being used alongside a general purpose processor. These HW accelerators are

tailored for a specific algorithm, therefore, many of them are required for complex

systems to enhance their performance. However, this comes at the high price of

the additional silicon. Recently, field programmable gate arrays (FPGA) are being

used for implementing reconfigurable architectures in which a fixed FPGA area can

be reprogrammed at runtime to change the circuit function; thereby implementing

multiple HW accelerators without additional area requirements.

The reconfiguration process is done through a runtime system implemented

either on-chip or on an external processor core [1]. The runtime system is also

responsible for ensuring a reliable reconfiguration process and dynamic adaptability

to avoid using defective blocks in the FPGA fabric. This establishes fault tolerance

of the dynamic, in-field adaptation to the application by reconfiguration. The

hardware overhead is reduced compared to classical fault tolerance schemes such as

those which involve structural redundancy.

The proposed methodology involves the pre-configuration test (PRET) of the

existing un-programmed FPGA configurable logic blocks (CLB), memory, cross-

bar switches, etc. If the target fabric is fault free, the reconfiguration process is

executed, followed by a post reconfiguration test (PORT). PORT is a functional

test focusing on delay faults and correct module integration, not covered by PRET.

All the test structures in the target area are removed after running a PRET test so

that their area is usable by application logic later. Note that PRET, PORT and the

actual reconfiguration process are defined and executed on one part of the FPGA

fabric or “container” at a time.

Fig. 1.1 shows an FPGA with a fixed processor core and a reconfigurable con-

tainer. The processor contains a runtime system which has access to the FPGA

1

2 Chapter 1. Introduction

partial reconfiguration (PR) port and is able to dynamically reconfigure portions of

the FPGA online. Before configuring the container into a HW accelerator, PRET

is performed to ensure structural integrity of the container under consideration.

Runtime

System
PR Port

Reconfigurable

Container

Processor Core

FPGA

PRET

HW Circuit

PORT

Figure 1.1: A runtime reconfigurable system implemented on an FPGA

1.2 Reliability Threat

The need for testing arises from the vulnerability of electronic devices to fault oc-

currence. The transistor feature size gets smaller in every new technology node and

the manufacturing process is becoming more complex resulting in silicon variations

within and between dies. During the lifetime of an electronic device, reliability de-

creases and behavior may differ from the intended one [2]. These aging effects are

also critical. In addition, transient faults could occur as a result of particle strikes,

and environmental factors such as fluctuations in temperature or power supply are

all threats to the reliability of FPGAs.

FPGAs are advancing as an implementation platform for digital circuit imple-

mentation because of their increased capacities and improved computer-aided design

(CAD) tools [3]. They are also finding applications in safety-critical reconfigurable

systems which drives the need to create a fault-tolerant platform for implementa-

tion. Online test is used in this thesis to create this fault-tolerant reconfigurable

FPGA system by validating the FPGA fabric before a module reconfiguration is

performed.

1.3 Thesis Organization

After the introduction, the necessary background information is briefly stated in

Chapter 2. This is followed by an extensive literature review of state-of-the-art

1.3. Thesis Organization 3

FPGA testing methods in Chapter 3. Chapter 4 explains the fault models adopted

in testing the various FPGA components.

Chapters 5 and 6 are dedicated to presenting the test concepts used in this

work. The concepts are based on the current state-of-the-art of the field and have

been extended where required. Implementation details and results are combined in

Chapter 7. Finally, the thesis is concluded with some brief notes about possible

future work in the field.

Chapter 2

Background

Contents

2.1 FPGA Overview . 5

2.1.1 FPGA Architecture . 5

2.1.2 Configurable Logic Blocks . 6

2.1.3 Switch Matrix and Interconnect 7

2.2 Xilinx Virtex-5 FPGA . 8

2.2.1 CLB Architecture . 9

2.2.2 Programmable Routing Resources 9

2.3 Built-In Self Test . 12

2.3.1 FPGA Testing . 12

2.3.2 Test Terminology . 13

2.1 FPGA Overview

The reconfigurability of FPGAs is a result of its re-programmable architecture.

This section introduces the required prerequisite information to guide the rest of

this work. A general view of FPGAs is given with explanation of the various building

blocks. The Xilinx Virtex-5 FPGA architecture is also considered specifically as it

is the implementation platform used in this thesis. Finally, a short introduction on

built-in self test (BIST) for FPGAs is given with some basic definitions.

2.1.1 FPGA Architecture

Fig. 2.1 shows a simplified circuit schematic of an FPGA. The main components

in an FPGA are the configurable logic blocks (CLB). These programmable units

implement the logic of a digital circuit. Each CLB communicates with another

through the interconnect network that consists of programmable switch matrices

(PSM) and interconnect wires. Finally the FPGA communicates with other logic

components through input/output blocks (IOBs). This makes it possible for the

FPGA to implement arbitrary digital logic circuits.

The presented schematic (Fig. 2.1) shows that each CLB consists of two logic

slices. Although this is true for Virtex-5 FPGAs, it is not the general rule. This is

5

6 Chapter 2. Background

IOBs

Interconnects

PSM

2 Logic

Slices
CLB

Figure 2.1: FPGA schematic diagram showing basic building blocks

just a partitioning of the CLB such that signal routing and other parameters are

optimized [3].

SRAM-based FPGAs are reconfigured by rewriting its SRAM configuration

cells. This process is done using one/multiple scan chains going through all the

programmable components [3]. The following subsection explains this while pre-

senting each of the FPGAs subcomponents.

2.1.2 Configurable Logic Blocks

CLBs consist of three main subcomponents: Multiplexers, lookup tables (LUT) and

sequential elements such as flip-flops. Each is presented in this subsection separately

then combined to illustrate an entire CLB.

2.1.2.1 Multiplexers

Multiplexers are used to specify the connection of signals to one another inside the

CLB. Fig. 2.2 shows a four-input multiplexer with the two select inputs tied to

SRAM configuration cells. This means that the multiplexer inputs are specified

when downloading the configuration and stays the same when a circuit is active on

the FPGA. An n-input multiplexer requires log2(n) SRAM configuration inputs.

2.1. FPGA Overview 7

Figure 2.2: A four-input FPGA multiplexer

2.1.2.2 Lookup Tables

Depending on its number of inputs, an LUT implements any combinational logic

function. This is also done through SRAM configuration cells that store the truth

table values for the logic function. A multiplexer selects the appropriate truth table

value depending on the input combination.

Fig. 2.3 demonstrates a typical two-input LUT. The configuration SRAM cells

are connected to the data inputs of a multiplexer of which the select inputs act as

the function inputs. In this way, any two input logic function is implemented [3].

Figure 2.3: A two-input LUT

Similarly, any n-input function can be implemented using a similar circuit with

2n SRAM cells and a 2n-input multiplexer.

2.1.2.3 Sequential Elements

Sequential elements are essential for any digital logic design. This dictates that

they must be present on the FPGA. They are usually preceded by a multiplexer

so that any signal from the logic portion of a slice can be routed through. Newer

FPGAs have sequential elements that can be configured into either a flip-flop or a

latch to implement both edge and level sensitive designs.

2.1.3 Switch Matrix and Interconnect

The interconnect topology is becoming a critical factor in new FPGAs. They ac-

count for approximately 80% of the configuration SRAM cells, indicating their

8 Chapter 2. Background

importance [4]. The purpose is to connect CLBs to each other and be flexible so

that any point in the FPGA circuitry can be connected to any other point.

Routing is carried out by programmable switches that route the signals in their

correct path, switch connections on or off, and buffer the interconnect wires.

Fig. 2.4 shows three kinds of programmable interconnect resources found in the

FPGA [3]. The multiplexer has already been introduced in context of intra-CLB

routing, but it is also an essential component in routing the global interconnects

found on the FPGA. It is clear that it picks which signal to drive the output

depending on its configuration. Fig. 2.4 also demonstrates a programmable pass-

transistor that can make or break connections. In addition a tri-state buffer is also

shown.

Signal

inputs

A

B

C

D

Y

SRAM

cells

A Y
A Y

Multiplexer
Pass

transistor

Tri-state

buffer

Figure 2.4: Three types of FPGA programmable switches

Xilinx FPGAs use island-style interconnects. This means that CLBs are sur-

rounded by fixed interconnect wires [3]. Between the CLB input/output pins, and

the wires are programmable switches. Altogether, these are grouped into a so-called

programmable switch matrix (PSM).

The PSM is able to make connections between the various pins attached to it so

that it connects CLB pins to interconnects. The programmable connections inside

the PSM are called programmable interconnect points (PIP). PIPs are implemented

using combinations of programmable switches such as the circuits shown in Fig. 2.4.

Fig. 2.5 illustrates the island-style interconnect architecture. Four CLBs are

shown as well as four PSMs. A possible PIP implementation is also shown. This

variant can make any connection between the four wires attached to it using five

pass transistors. Each pass transistor is controlled using an SRAM configuration

cell.

2.2 Xilinx Virtex-5 FPGA

The implementation platform of this work is the Xilinx Virtex-5 FPGA [5]. This

FPGA is capable of many advanced features such as partial reconfiguration [6] and

memory readback [7, 8, 9]. It also contains many advanced components such as

2.2. Xilinx Virtex-5 FPGA 9

Interconnect

wires

PSMCLB

Figure 2.5: Island style FPGA interconnects and possible implementation of a PIP

digital signal processing slices and block random-access memory (RAM). This work

considers the CLB logic and interconnects. This section is dedicated to present the

Virtex-5 FPGA architecture and configuration.

2.2.1 CLB Architecture

The logic components introduced in the previous section are combined together to

form a logic slice. The Virtex-5 CLB consists of two logic slices: sliceL and sliceM

[5]. Both are connected to a single PSM as shown earlier in Fig. 2.1.

Fig. 2.6 shows sliceL. It consists of a circuit repeated four times. This circuit

consists of a 6-input LUT connected to multiplexers and finally a sequential element

(configured as either a flip-flop or latch). A chain of multiplexers and XOR gates

runs through the middle of the slice to perform fast carry computations.

Fig. 2.7 depicts sliceM, which contains more functionality than the sliceL. In

addition to LUT functionality, sliceM LUTs can be configured into RAM or shift

register (SR). This is done using the storage elements present within each LUT.

2.2.2 Programmable Routing Resources

Virtex-5 routing is organized in an island-style architecture [5]. Neither the details

of the PSM nor the interconnect wires are given in the documentation because of its

complexity. However, from the details provided from Xilinx computer-aided design

(CAD) tools, many of the interconnect details are inferred.

2.2.2.1 Wire Classification

There are five main interconnect types: Global, long, pent, double and

bounceacross. They differ in length, buffering, number of connections and num-

ber of hops. Table 2.1 summarizes their essential properties.

Global and long lines are bidirectional and can broadcast signals to multiple

CLBs depending on the configuration. Pent, double and bounceacross wires are

unidirectional. Pent and double lines span five and two CLBs respectively. This

10 Chapter 2. Background

A6
LUT
ROM

COUT

D

DX

C

CX

B

BX

A

AX

O6
O5

UG190_5_04_032606

A5

A4

A3

A2

A1

D6

DMUX

D

DQ

C

CQ

CMUX

B

BQ

BMUX

A

AQ

AMUX

DX

D5

D4

D3

D2

D1

D

FF
LATCH
INIT1
INIT0
SRHIGH
SRLOW

SR REV

CE

CK

D

FF
LATCH
INIT1
INIT0
SRHIGH
SRLOW

SR REV

CE

CK

D

FF
LATCH
INIT1
INIT0
SRHIGH
SRLOW

SR REV

CE

CK

D

FF
LATCH
INIT1
INIT0
SRHIGH
SRLOW

SR REV

Q

CE

CK

CIN

0/1

A6
LUT
ROM

O6
O5

A5

A4

A3

A2

A1

C6

CX

C5

C4

C3

C2

C1

A6
LUT
ROM

O6
O5

A5

A4

A3

A2

A1

B6

BX

B5

B4

B3

B2

B1

A6
LUT
ROM

O6
O5

A5

A4

A3

A2

A1

A6

AX

SR

CE

CLK

A5

A4

A3

A2

A1

Q

Q

Q

Reset Type

Sync

Async

Figure 2.6: Virtex-5 sliceL diagram (from [5])

Wire Type Length (CLBs) # Connections # Hops

Global 20 20 1

Long 24 4 6

Pent 5 2 2,5

Double 2 2 1,2

Bounceacross 1 1 1

Table 2.1: Virtex-5 wire properties

2.2. Xilinx Virtex-5 FPGA 11

X-Ref Target - Figure 5-3

A6
DI2

COUT

D

DX

C

CX

B

BX

A

AX

O6

DI1

MC31

O5

UG190_c5_03_022709

A5

A4

A3

A2

A1

D6

DI
DMUX

D

DQ

C

CQ

CMUX

B

BQ

BMUX

A

AQ

AMUX

Reset Type

DX

D5

D4

D3

D2

D1

WA1-WA6

WA7

WA8

DPRAM64/32
SPRAM64/32
SRL32
SRL16
LUT
RAM
ROM

DPRAM64/32
SPRAM64/32
SRL32
SRL16
LUT
RAM
ROM

DPRAM64/32
SPRAM64/32
SRL32
SRL16
LUT
RAM
ROM

DPRAM64/32
SPRAM64/32
SRL32
SRL16
LUT
RAM
ROM

D

FF
LATCH
INIT1
INIT0
SRHIGH
SRLOW

SR REV

CE

CK

D

FF
LATCH
INIT1
INIT0
SRHIGH
SRLOW

SR REV

CE

CK

D

FF
LATCH
INIT1
INIT0
SRHIGH
SRLOW

SR REV

CE

CK

D

FF
LATCH
INIT1
INIT0
SRHIGH
SRLOW

SR REV

Q

CE

CK

CLK
WSGEN

CIN

0/1

WE

Sync

Async

A6
DI2

O6

DI1

MC31

O5

A5

A4

A3

A2

A1

C6

CI

CX

C5

C4

C3

C2

C1

A6
DI2

O6

DI1

MC31

O5

A5

A4

A3

A2

A1

B6

BI

BX

B5

B4

B3

B2

B1

A6
DI2

O6

DI1

MC31

O5

A5

A4

A3

A2

A1

A6

AI

AX

SR

CE

CLK

WE

A5

A4

A3

A2

A1

Q

Q

Q

WA1-WA6

WA7

WA8

WA1-WA6

WA7

WA8

WA1-WA6

WA7

WA8

Figure 2.7: Virtex-5 sliceM diagram (from [5])

12 Chapter 2. Background

distance is the Manhattan distance from source to sink and they can be in any

direction. There is additionally an intermediate middle connection of distance 2

and 1 for pent and double wires respectively. A connection can either be established

from the beginning (BEG) terminal to this middle (MID) connection or to the final

(END) connection.

Appendix B illustrates the wire types and some connection possibilities for each

classification. It is clear that each wire type can connect in any of the four direc-

tions (north/south/east/west). In addition, double and pent wires can make diag-

onal connections as long as the Manhattan distance abides to their classification.

Appendix B describes the Xilinx naming conventions used in naming interconnect

pins.

2.3 Built-In Self Test

Semiconductor testing can either be controlled on-chip or through external test

machines. It is necessary to use on-chip testing for applications that require in-field

testing because it would not be possible to connect large external test machines in

that case. This test scheme is called built-in self test (BIST).

To test a digital circuit, test patterns are applied at the circuit inputs and the

responses are observed. The test response is analyzed and compared to the expected

output to indicate whether the circuit failed to produce the correct result or if the

test was passed.

This section covers some basic definitions about BIST but omits the details and

specifics of FPGA testing. This is explained later in detail in the “state of the art”

chapter as well as chapters 5 and 6.

2.3.1 FPGA Testing

The different FPGA components were presented earlier in this chapter. BIST is

employed to test these different components. Fig. 2.8 illustrates a basic test setup.

It consists of a test pattern generator (TPG) and an output response analyzer

(ORA). These components provide the test vectors and examines the test results

to indicate test status (passed/failed).

Figure 2.8: BIST setup

Fig. 2.8 states that the circuit under test (CUT) must be BIST enabled. This

means that there must be test infrastructure inside the circuit to facilitate test

vector application and ensure observability of faults at circuit outputs.

2.3. Built-In Self Test 13

Due to FPGA reconfigurability, it is possible to reconfigure a CUT into a BIST

enabled one by reprogramming the fabric. It is crucial to introduce the term “test

configuration” (TC) in this context. A test configuration is an FPGA setup that

ensures that the targeted CUT is BIST-enabled and includes the configuration for

the corresponding TPG and ORA.

CLB components were presented earlier in this chapter. Each subcomponent

requires a different TPG, ORA and FPGA configuration. This dictates the use of

multiple TCs for CLBs as well as interconnects. Each TC guarantees coverage of

a subset of the faults by targeting only one or two subcomponents each time. The

targeted subcomponents are configured into BIST-enabled CUTs and a valid TPG

and ORA are configured for testing the CUT. The complete set of TCs is designed

such that full-coverage of CLB faults is achieved after all TCs are executed.

The number of TCs is the main parameter for optimization of FPGA testing

because it determines test speed. FPGA configuration time is approximately 1000

times slower than test application time.

2.3.2 Test Terminology

The relevant terminology and definitions typically used in the field of testing are

listed below. These terms will be used in the following sections.

− Defect: Distortion of the material shape in a chip.

− Fault: Abstraction of defects at logic level.

− Error: Incorrect circuit state during computation.

− Online Test: A test that is performed in-field without interrupting normal

circuit operation.

− Fault Coverage: Portion of detected faults out of the total number of as-

sumed faults.

− Test Vector/Pattern: Bit-vector that exposes potential faults while testing

a logic circuit.

− Test pattern Generator (TPG): Circuit that generates test vectors for a

CUT.

− Output Response Analyzer (ORA): Circuit that analyzes test response

and indicates whether a fault is detected from the running test.

− Test Configuration (TC): An FPGA setup that ensures that the targeted

CUT is BIST-enabled and includes the configuration for the corresponding

TPG and ORA.

− C-testability: A C-testable array of logic circuits is one that can be tested

using a fixed number of test patterns and test configurations irrespective of

array length.

Chapter 3

State of the Art

Contents

3.1 CLB Test Approaches . 15

3.1.1 CLB Test with Response Compaction 16

3.1.2 Array-based CLB Test . 17

3.1.3 Memory Readback . 22

3.1.4 Test Configuration Minimization 23

3.1.5 Summary of CLB Test Approaches 25

3.2 Interconnect Test Approaches 25

3.2.1 Basic Interconnect Testing . 25

3.2.2 Advanced Interconnect Testing 27

The subject of FPGA test has been rigorously researched in the past decade.

FPGA test is primarily divided into two parts: CLB testing and interconnect test-

ing. In this chapter, literature representing the current state-of-the-art will be

reviewed and briefly compared.

3.1 CLB Test Approaches

The logic portion of the FPGA consists of memory elements, multiplexers and some

logic gates. These components are packed in the CLBs which are repeated in an

array through the FPGA structure as discussed in chapter 2.

There are three main approaches to testing FPGA logic components found in

the literature. Either by using conventional logic testing combined with the use of

test response compaction [10, 11, 12] or by using concepts from testing iterative

logic arrays (ILA) [13, 14, 15, 16, 17, 18, 19, 20, 21] or by using advanced memory

read back methods for response analysis [12, 22]. The three approaches are restated

below:

− Approach 1: Conventional CLB test with test response compaction.

− Approach 2: Using iterative logic arrays.

− Approach 3: Using memory read back methods for response analysis.

15

16 Chapter 3. State of the Art

Optimization of logic testing aims at reducing the number of required test config-

urations and the required BIST hardware overhead. For these reasons, testing with

ILAs has been most popular thus far. The third approach is relatively new since

it is based on memory readback which has only been available for newer FPGAs.

The first approach is the simplest one but it requires the most BIST infrastructure

as well as the longest test time.

3.1.1 CLB Test with Response Compaction

The first methods for testing FPGAs are simple. The basic idea is to configure one

row (or column) of the FPGA as the circuits under test (CUT) and the next row (or

column) as the BIST infrastructure. This hardware infrastructure is composed of

response compactors [10, 11] or test pattern generators (TPG) and output response

analyzers (ORA) [12].

Response compaction could be in the form of AND and OR trees designed to

compact a response consisting of all 1’s or all 0’s respectively [10]. This approach is

advantageous in detecting multiple faults but requires at least three configurations

for each test type. This allows the rows (or columns), previously configured as

compaction trees, to be tested. To optimize the AND/OR trees, the authors in [10]

propose compaction using so-called “majority gates”. These 3-input gates act as

binary AND or OR gates depending on the control signal on its third input thereby

reducing the number of test configurations for architectures with LUTs having three

or more inputs.

Instead of using separate response compaction methods for the “1” output and

the “0” output from the CLB, a parity tree is used in [11] for response compaction.

As the name suggests, the XOR tree computes the parity of the signals input to

it. It will therefore flip the output for any odd number of bit flips input to it [11].

This approach has lower hardware overhead and less test time when compared to

[10] due to the simpler compaction method. This testing scheme is illustrated in

Fig. 3.1; two CLB rows are shown in which the first contains the CUTs and the

second contains the compaction tree, in this case a parity tree. The final output is

observable through an IOB.

CUT CUT CUT

Test Stimuli

Row(x)

Row(x+1)
IOB Output

Figure 3.1: Testing scheme using parity tree for test response compaction

The approach in [12] does not use response compaction but relies on the use of

automatic test equipment (ATE) and is suitable for offline test only. Similarly to

3.1. CLB Test Approaches 17

[11, 10] it requires two test phases to complete one test type on the CLBs. This is

to alternate between the CUTs and the BIST hardware on the chip. In this case,

half the FPGA is configured as TPGs and ORAs to test the other half: the CUTs.

TPGs are simple counters and ORAs compare two identical CLBs under test and

stores the response in a flip-flop. The boundary scan test access port is then used

to readback and analyze the results [12].

3.1.2 Array-based CLB Test

In the previous section, the term “CLB test” is used loosely with no details of the

actual test performed on each CUT. The literature that will now be introduced,

however, goes into the details of sub-CLB component test and coverage according

to the single stuck-at fault model. The CUTs are then connected in an array.

Because they all follow the same idea, the publications [13, 14, 15, 16, 17] are

discussed collectively in this section. CLBs are divided into three main subcom-

ponents, each of which can be separately exhaustively tested [14, 13, 16]. These

components are the LUTs, the multiplexers and the sequential elements (flip-flops

or latches). The following test methodology follows the “divide and conquer” ap-

proach in testing FPGAs, the component tests are therefore introduced each under

a separate title.

3.1.2.1 Multiplexer

Multiplexers are used extensively in FPGAs to route signals to their appropriate

terminals. The multiplexer select inputs are tied to SRAM configuration memory

cells and can only be changed by reconfiguring the FPGA [13, 14, 16]. It is im-

portant to distinguish between configuration inputs (such as the select inputs of a

multiplexer) and the operation inputs (such as the actual multiplexer inputs) since

the former determines the number of configurations, whereas the latter specifies the

number of test patterns. As previously mentioned and now restated for emphasis,

FPGA test time is measured by the number of required reconfigurations, that is,

the number of patterns on the configuration inputs.

An exhaustive test guaranteeing detection of all single stuck-at faults and en-

suring proper function without knowledge of the implemented multiplexer structure

is achieved by applying the exhaustive test set to the configuration inputs and ob-

serving the output for both 0 and 1 input patterns [13, 14, 16]. That means that

for a multiplexer of n select inputs, 2n configurations are required each with only

two test patterns. This is shown in Fig. 3.2 in which 22 = 4 different configurations

are required because there are two select inputs.

3.1.2.2 Lookup Table: Function Mode

LUTs are the main building blocks of CLBs. As explained in chapter 2, LUTs

contain sequential elements and a large multiplexer to store and select the function

values respectively. From this viewpoint; the same test methods for the multiplexer

18 Chapter 3. State of the Art

0 0

0

1

2

3

0 1

0

1

2

3

1 0

0

1

2

3

1 1

0

1

2

3
{0,1}

{0,1}

{0,1}

{0,1}

Figure 3.2: Multiplexer testing configurations

can be used for the LUTs [15, 13, 14, 16]. The difference is that the multiplexer select

inputs are the operation inputs whereas the data inputs are tied to configuration

cells specifying the LUT function. This is made clear in Fig. 3.3.

0

{0,0,1,1}

1 1 0

{0,1,0,1}

1

{0,0,1,1}

0 0 1

{0,1,0,1}

a) XOR b) XNOR

Figure 3.3: LUT testing configurations

2n configurations are required for a n-select multiplexer with only two test pat-

terns necessary. For a n-input LUT the opposite is true: only two test configurations

are required with 2n test patterns [15, 13, 14, 16]. The two configurations must ex-

ercise both the “0” and “1” values which may be placed in the SRAM configuration

cells. These configuration bits also determine the logic function of the LUT so the

authors use the XOR and XNOR configurations for two reasons [15, 13, 14, 16].

The first reason is that these configurations test for all stuck-at faults (0 and 1)

since they are the inverse of one another. The second reason is that XOR/XNOR

gates have no controlling value; if a single fault occurs at their input, it always

inverts the output. This paves the way for connecting them in a C-testable array

capable of testing for single faults. The two configurations described are shown in

Fig. 3.3. The first configuration can be repeated once more to test additionally for

transition faults in the SRAM configuration cells [16, 15]. This makes a total of

three test configurations for the LUTs in function mode.

The mentioned publications then state that the LUTs should be connected to-

gether in a C-testable array which guarantees propagation of a single fault and

3.1. CLB Test Approaches 19

suggest the reduction of an FPGA from a two dimensional array into a one dimen-

sional array of testable ILAs as shown in Fig. 3.4.

1

2

3

2

3

4

1

Figure 3.4: Three one-dimensional arrays of three CLBs

Although it is proven using boolean logic expressions that the ILAs repeat their

logic function output every second CUT [16], it still remains to provide a formal

proof for the C-testability of the XOR arrays. In addition, the description of the

arrays in [15, 13, 16] is not very clear. These shortcomings are remedied within this

thesis.

3.1.2.3 Lookup Table: RAM Mode and Flip-Flops

As discussed earlier, advanced LUT functions include RAM mode. In this config-

uration, the LUT acts as a random-access memory of size 2n for a n-input LUT.

Testing RAM modules is a very well-researched subject and mature algorithms exist

for it such as the march tests. Only one test configuration is required to test the

LUTs in this mode using one of the mentioned tests [15, 13]. The authors choose

to implement the MATS++ algorithm with a small modification: the output of

the RAM is registered with the slice flip-flop. This adaptation is called the shifted

MARCH++ algorithm and allows for simultaneous testing of the flip-flops.

RAM modules can be configured in an array, called the pseudo shift register

[13, 15]. This is done by connecting the output of the flip-flop to the data input

of the next RAM module as shown in Fig. 3.5. For an array of size m it is shown

that it takes 2m clock cycles for each address per test element to be tested [13, 15].

The MATS++ has three test elements meaning that the total test time adds up to

6m× 2n clock cycles (where n if the number of address bits).

Another approach handles the flip-flop test separately by configuring them in

a scan chain [23]. This test is additionally adaptive, able to detect and diagnose

the position of multiple faults. When a faulty flip-flop is detected, the chain is

reconfigured starting from the next fault-free flip-flop. The number of configurations

can therefore be any number between 1 and N (N being the length of the flip-flop

chain) [23]. This test is advantageous for its multiple-fault detection and diagnosis

capabilities. It is devised in the context of full coverage manufacturing testing.

Only in [21] are the various enable and set/reset control signals mentioned for

20 Chapter 3. State of the Art

CLK

D QOUTD

Addr CLK CLK

D QOUTD

Addr CLK CLK

D QOUTD

Addr CLK

LUT:RAM LUT:RAM LUT:RAMFF FF FF

Figure 3.5: The pseudo shift register

CE

D

CK

Q

Figure 3.6: Testing the clock enable

the flip-flops. In order to perform an exhaustive functional test for the flip-flops,

they are connected in an array and the different modes are used with sufficient input

stimuli to expose any functional faults [21]. For instance, Fig. 3.6 shows five clock

cycles which are necessary to test all possible transitions which would functionally

test the clock enable (CE) input [21]. Taking the Xilinx XC4000 FPGA as an

example, it is highlighted that the flip-flops must be tested with all the following

considerations:

− Testing the “input and hold” functions (flip-flop storage behavior).

− Rising- and falling-edge triggered flip-flops.

− Set/reset input and functionality.

− Set/reset enable and disable.

− Clock enable function

Tests should be overlapped where possible to reduce configurations [21], but

there are no results on the number of configurations achieved by the authors for

flip-flop testing separately.

3.1. CLB Test Approaches 21

3.1.2.4 Other Array Test Methods

CLB inputs are always greater in number than their outputs. To overcome this

problem in array testing, while assuring full observability of errors, helper CLBs

are used to generate the missing outputs for the next cell in an array [18]. This also

means that the helper CLBs require a separate test session in which they become

the CUTs. Compared to previous methodologies presented in this section, this test

requires double the number of configurations and therefore double the test time.

In fact, a third test configuration is also necessary to test the FPGA area used by

the TPG and ORAs [18]. One TPG is used to feed the test stimuli and one ORA

is used to compare the output of each pair of arrays [18]. This means that a large

number of IOBs (N/4 IOBs for N rows) are still required to observe the response.

The concepts of ILA testing [24] are utilized in [21] to derive test configurations

for LUTs. To test a logic array, such as Fig. 3.7, the logic functions of blocks f, g and

h must be constrained such that h(g(f(v))) = v. That means that the input test

pattern v repeats after the array period, which is three in this example. The test

pattern v must be chosen to satisfy this property, furthermore; the functions f, g and

h are constrained to be identical so that the condition becomes f(f(f(v))) = v. In

this way, each element in the array can receive the test pattern v by the additional

application of f(v) and f(f(v)) to the input of the array [21]. Appropriate test

patterns must be applied on the non-propagating inputs to these cells (which are not

shown on the figure) and that separate arrays can be configured for sequential and

combinational elements [21]. The publication lacked however to present examples

of such arrays although results were reported on them; however, an unpublished

document was referenced with this data.

f g
v f(v) g(f(v))

h f
f(v)

Period = 3

h(g(f(v))) = v

h(g(f(v)))

Figure 3.7: One dimensional ILA of length 3

Pipelining of the arrays under test is introduced in [20]. For a CLB with two

outputs, the LUT output goes out of the CLB in a direct connection and another

branch of it passes through a clocked flip-flop. The proposed test arrays are config-

ured such that the outputs of the CLBs in an array alternate between the registered

and the unregistered ones [20].This forces the same path delay for both branches

and simplifies the construction of the TPG and ORA [20]. Three CLBs using this

connection, each consisting of two LUTs, are shown in Fig. 3.8. Test configurations

consist mainly of identity and inverting functions to test each LUT input separately

for stuck-at faults [20].

A very interesting and different approach for CLB testing is used in [19]. First,

to test the LUTs a partial chain is defined as four LUTs and flip-flops connected

22 Chapter 3. State of the Art

X

XQ

Xi

Xj

Y

YQ

Yi

Yj

X

XQ

Xi

Xj

Y

YQ

Yi

Yj

X

XQ

Xi

Xj

Y

YQ

Yi

Yj

Figure 3.8: Interconnection of pipelined CLBs in an array

in series after a TPG counter. The configurations are chosen such that they com-

pletely test the LUTs under test, in addition, the output of this partial chain always

toggles between “1” and “0” in the fault-free case [19]. The partial chains are then

connected in series with the output connected to the clock input of the next partial

chain. Any fault will distort the output such that a clock pulse becomes missing.

The resulting error propagates through the array [19]. Multiple errors accumulate

and are detected by analyzing the pulse of the final output [19]. The shortcomings

of this approach are the test time and complexity. To test the LUTs eight configu-

rations are necessary which take more than double the time compared to [13] which

only require three configurations. In addition, test configuration is complicated;

specific details have to be taken into account for each configuration such that the

faults are not masked in the final output [19]. Implementation of multiple clocks in

this manner may also be tricky since the design may not pass the design rule check

(DRC) if each clock input needs to be connected to a clock buffer.

LUT

& FF

LUT

& FF

LUT

& FF

LUT

& FF
TPG

CLOCK

Partial Chain Partial Chain Partial Chain

a)

b)

CLOCK
ORA

Figure 3.9: a) A partial chain, b) Connection of 3 partial chains

3.1.3 Memory Readback

Configuration memory readback is available in Xilinx Virtex series FPGAs, addi-

tionally, there are the options to capture the values in the CLB flip-flops or in the

block RAM [7]. This provides the freedom of accessing the test responses through a

different method other than scan chains. It is shown in [12] that response analysis

can be done by memory readback through the JTAG boundary scan interface. The

3.1. CLB Test Approaches 23

disadvantage of using this method is its slow speed.

Newer FPGAs such as the Virtex-4 FPGA have more options for memory read-

back operations, such as partial reconfiguration memory readback. There are also

different ports such as the ICAP/SelectMAP interface which can operate at much

faster speeds and are more flexible when compared to JTAG boundary scan [8]. In

this way, the test configurations are organized such that there is a TPG and ORA

for each component [22, 25, 26] and response analysis and diagnosis is done after

the reconfiguration memory readback stage. Obviously, such a test would require at

least three times the time overhead if compared to a single-fault detecting scheme

such as array testing. However, this method provides complete observability and an

excellent diagnosis resolution. Test configuration generation is also greatly simpli-

fied, since the test is reduced to testing a single component with no controllability

or observability issues, but all the advantages come at the cost of a longer test time.

3.1.4 Test Configuration Minimization

A method is described in [27] that deals explicitly with the minimization of the

number of required test configurations (TC). The authors start from three basic

conditions for the testability of a module consisting of multiple subcomponents:

− Condition 1: All TCs are applied on each subcomponent in the module.

− Condition 2: All inputs of each subcomponent must be controllable. This

is achieved by imposing constraints on the driving subcomponents.

− Condition 3: All outputs of each subcomponent must be observable. This

is achieved by imposing constraints on the driven subcomponents.

3.1.4.1 Example TC minimization

The TC minimization algorithm is best described using an example. Consider

the module in Fig. 3.10. It is a simple combinational block consisting of three

multiplexers, with four inputs and one output. The first step is to derive the

testability conditions of each component. Now consider MUX1; its conditions are

derived as follows:

− Condition 1: To use all test configurations C1 must take on both the “0”

and “1” values in separate configurations.

− Condition 2: This condition is always satisfied because X2 and X3 are always

controllable.

− Condition 3: Observability of the MUX1 output is obtained either through

MUX2 with C2 = 1, or through MUX3 with C3 = 0.

These conditions are now combined in two boolean expressions expressing testa-

bility of MUX1 in the module shown. After the same is performed for the remaining

24 Chapter 3. State of the Art

C1

C3

C2

MUX1

MUX2

MUX3

X4

X3

X2

X1

Y2

Y1

Figure 3.10: A simple module of multiplexers

two multiplexers, the following six conditions are compiled [27]. They are sufficient

to express the testability of the entire module.

F1(MUX1) = C1 ∧ (1 ∧ 1) ∧ (C2 ∨ C3) (3.1)

F2(MUX1) = C1 ∧ (1 ∧ 1) ∧ (C2 ∨ C3) (3.2)

F3(MUX2) = C2 ∧ (1 ∧ (C1 ∨ C1)) ∧ 1 (3.3)

F4(MUX2) = C2 ∧ (1 ∧ (C1 ∨ C1)) ∧ 1 (3.4)

F5(MUX3) = C3 ∧ ((C1 ∨ C1) ∧ 1) ∧ 1 (3.5)

F6(MUX3) = C3 ∧ ((C1 ∨ C1) ∧ 1) ∧ 1 (3.6)

It remains now to solve for a minimum number of configurations which satisfy

all the mentioned testability conditions. For the three configuration bits C1−3 there

are eight possible configurations as listed in Fig. 3.11. It is clear that only two

test configurations (shown in red) are sufficient to satisfy testability for the whole

module.

The authors from [27] then extend this method for all the other subcomponents

found in a CLB and derive a minimum of five test configurations for a XILINX 4000

FPGA CLB [27]. The publication lacks, however, to present any implementation

details about how the minimization problem was solved in this context and how

it can be automated for larger circuits. This is remedied within the work of this

thesis.

3.2. Interconnect Test Approaches 25

F1 F2 F3 F4 F6F5

C1 C2 C3

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

1

0

1

0

1

0

1

Figure 3.11: TC coverage of testability conditions

3.1.5 Summary of CLB Test Approaches

Direct comparison of the number of configurations between tests is not very mean-

ingful when analyzing results implemented on different FPGA families or archi-

tectures. This is because the logic structure differs from one FPGA to the next.

However, after analyzing the broad methods for CLB test; they can be compared

against each other objectively, regardless of the number of configurations or other

test metrics presented in the respective publications.

3.2 Interconnect Test Approaches

Testing interconnects (or wires) requires different considerations than those applied

for logic testing. The test itself is usually quite simple, since it only consists of

passing “0” and “1” patterns through the wire under test (WUT) and checking

whether the output follows the input. This does not undermine its importance

in any way; not only do interconnects use up more than 80% of the total FPGA

configuration [4] bits but they are becoming ever more complex in newer FPGAs

as well [5].

After going through basic principles and concepts of interconnect testing found

in the literature, advanced methods and algorithms are discussed which would be

applicable to high-end FPGAs today.

3.2.1 Basic Interconnect Testing

There are many publications [28, 29, 30, 31, 32, 33, 34] that present the concepts

and definitions associated with FPGA testing without the associated technical im-

plementation considerations and difficulties. Those are the basics for interconnect

testing but do not count as methods for FPGA test, simply because the aforemen-

tioned implementation difficulties constitute the main interconnect test problem.

26 Chapter 3. State of the Art

3.2.1.1 Interconnect/Logic Interface

Two publications [29, 30] deal with the test of the “configurable interface module”

(CIM) that is present between an interconnect network and the CLBs. The authors

assume two very simple implementations for the CIMs; n-input multiplexers, or pass

transistors [29, 30]. Although this is a valid assumption for very simple FPGAs,

it is irrelevant to today’s FPGAs in which the interconnect network has become

very complicated and can no longer be abstracted to such a degree. The authors

then discuss multiplexer testing and argue that the input CIMs to a CLB require

n configurations, one for each possible wire. On the other hand, the output CIMs

only require two TCs since many outputs can be observed simultaneously.

3.2.1.2 Interconnect Wires

The stuck-at, open and bridging fault models are widely adopted in the literature in

the context of interconnect testing [28, 31, 33]. Most FPGA layouts are proprietary

and unavailable to the test engineer, making tests for bridging faults very rough and

involving many assumptions [31]. The main issue with interconnect test is however

the configuration of the wires under test (WUT) such that they can be tested with

the minimum number of FPGA reconfigurations.

An assumption is widely adopted for dated research in this area[28, 31, 32, 33,

34], and is suitable for older FPGAs. This assumption is that a programmable

switch matrix (PSM) has four identical sides as shown in Fig. 3.12. That means,

that the number of north/south/east/west wires are all identical in number and be-

havior making their test a simple task. Irregularities from this symmetric structure

are then handled separately [28].

N1 N2

S1 S2

E1

E2

W1

W2

N1 N2

S1 S2

E1

E2

W1

W2

N1 N2

S1 S2

E1

E2

W1

W2

Figure 3.12: Three test configurations for non-redundant fault coverage

Fig. 3.12 shows three test configurations which are sufficient to test all the

mentioned stuck-at/open/bridging faults [28]. These configurations are a lower

3.2. Interconnect Test Approaches 27

bound for the number of configurations required to test the FPGA interconnects

[28]. After the connection in such a configuration, the twelve WUT ends are simply

connected to TPGs and ORAs. The same publication [28] explains that there are

two categories of faults assumed; those inside the PSM logic and those on the

WUTs.

Note that only single hop wires are assumed so far. When an example Xilinx

3000 FPGA is considered for FPGA test following the same concept [28], double

wires are identified and they require an additional separate handling of their test.

This suggests that simply finding orthogonal configurations for interconnect wires

on a uniform PSM assumption is not sustainable; current FPGAs have at least five

kinds of interconnect wires [5]. In addition, the configuration presented requires

many IOBs for the application of the test patterns and the same for observing the

responses. This shortcoming was addressed in the paper by connecting the various

wires together in a longer length WUT.

The authors in [31] give a more in-depth study of FPGA interconnect testing

which is also based on the simplifications mentioned in the previous paragraphs. the

WUTs are configured into so-called ladders. It states additionally the test patterns

used for testing a bunch of wires for stuck-at/open/bridging faults. An exhaustive

2n patterns are applied for a group of n WUTs, furthermore; walking patterns are

also utilized (“1” in a field of zeros and vice versa). Test patterns and responses are

applied and collected using on-FPGA configured TPGs and ORAs, they are finally

read out using FPGA boundary scan.

Seven test configurations are derived in [33] for the simple PSM assumption, but

guarantees a better diagnosis. In [34] the same three basic configurations (shown

in Fig. 3.12) are explained in the context of testing the interconnects in a multi-

ple FPGA system. In [32], interconnect test time is reduced by reconfiguring the

FPGA during testing. This is done by using a linear feedback shift register (LFSR)

attached to each PSM and is therefore unsuitable to existing FPGAs without this

feature.

3.2.2 Advanced Interconnect Testing

In this subsection, advanced methods for interconnect testing are described. The

structure of the PSM is explicitly accounted for and the main problem in intercon-

nect testing, namely the routing of WUTs, is tackled. Unlike basic approaches, no

assumption on the PSM connections are made.

3.2.2.1 Cross-Coupled Parity BIST Approach

A systematic approach for testing the different interconnect types in Xilinx Virtex-4

FPGAs is given in [4, 25, 26]. Global routing resources are classified into their differ-

ent types depending on their direction (North/South/East/West), their length, the

number of hops between connections and their buffer type (unidirectional/bidirec-

tional) [4]. Test configurations are then manually devised for each wire classification

28 Chapter 3. State of the Art

following a divide & conquer approach.

To account for faults in the TPG/ORA a cross-coupled parity based scheme

is used [4]. The authors also claim that using this scheme the number of test

configurations are minimized since a higher number of WUTs are supported as well

as an odd number of WUTs; claimed to improve on previous counter and parity-

based approaches [4].

The publication [4] and the corresponding theses [25, 26] give some insight on

implementation details for low level configuration of Xilinx FPGAs. The authors

use Xilinx Design Language (XDL) for low-level design entry, and it is automated

using C programming for various Virtex FPGAs. The methods used however lack

generality and are very specific to Virtex-4 FPGA. In addition, a lot of design time

is required to derive the different configurations for each interconnect classification.

3.2.2.2 Max-Flow Approach I

To find the minimum number of test configurations for a PSM, while satisfying

routing constraints, a modified max-flow algorithm is introduced in [35]. This al-

gorithm is designed to test the PSM itself and not the wires as illustrated in Fig.

3.13. The algorithm runs on one PSM and is repeated for identical PSMs [35].

TPG

(CLB)

ORA

(CLB)

PSM 1

PSM 2

Figure 3.13: Test structure for testing PSMs using max-flow approach

PSM elements, such as pass transistors and multiplexers are mapped to a graph

representation. Then they are sorted in three different groups as input to the

algorithm:

1. TPG (CLB) outputs to PSM inputs.

2. PSM outputs to ORA (CLB) inputs.

3. PSM inputs to PSM outputs.

The node groups are explicitly listed in this order, when entered to the algorithm

to allow the connections with lowest number of possible paths, to be routed first [35].

The modified max-flow algorithm [35] generates test configurations as summarized

in the following pseudo code:

3.2. Interconnect Test Approaches 29

1 Initialize weights

2 repeat

3 Run max-flow(group 1)

4 Run max-flow(group 2)

5 Run max-flow(group 3)

6 Calculate fault coverage

7 Increment weight on used edges

8 stop when fault coverage is 100%

The max-flow algorithm runs many iterations on the set of unrouted nodes;

giving priority to the nodes where the faults have not yet been detected. This

is implemented by associating a weight with each edge (which represents a wire

segment). Whenever an edge is used in a test configuration a fault associated with

it is tested for so the weight of that edge is incremented. The max-flow algorithm

chooses the lower-weight edges with higher probability ensuring that untested wires

are accounted for first [35]. Additional considerations include assuring that each

node can only have a single driver, this is done by assigning a capacity of one to

each node.

The authors claim a polynomial complexity for the max-flow algorithm when

solving groups 1 and 2. In routing group 3 there are more possibilities causing

the algorithm’s complexity to increase and it becomes non-polynomial [35]. Imple-

mentation is done using Xilinx JBits Java framework for low-level configuration of

FPGAs and results are presented for sample Virtex-2 FPGAs [35]. Note that JBits

is no longer supported and only has access to the Virtex-2 family of FPGAs so the

experimental results presented are obsolete.

3.2.2.3 Max-Flow Approach II (1-N Mapping)

A more recent approach also utilizes the max-flow algorithm to derive test config-

urations for FPGA interconnects [36]. It is called 1-N mapping since this is the

general case of programmable interconnect points (PIP) in FPGAs; one node can

connect to multiple (N) destinations. Fig. 3.14 shows three FPGA switch matri-

ces in series with east connections, its graph representation and a potential path

through the graph. This diagram is used to simplify explanation of the algorithm.

The algorithm handles one interconnect direction at a time, attempting to find

paths through the graph from source to sink. The nodes and edges s′ → s and

t→ t′ are added to the graph description with capacities k, where k is the number

of wires to be routed at a time limited by the number of flip-flops between switch

matrices. This is because the authors opt for a buffered test scheme with all WUTs

going through flip-flops between PSMs [36]. All other graph edges have the capacity

of one.

30 Chapter 3. State of the Art

a)

b)

s’ s t t’

k
1
1

1
1

k

c)

s’ s t t’

k-1 1
1

0
1

k-1

Figure 3.14: Graph representation of east interconnects inside/between three switch

matrices

The lift-to-front implementation of the Ford-Fulkerson method for solving max-

flow problem is used for its performance [36]. Whenever a path is selected, all the

edges capacities are decremented to zero and the s′ → s and t → t′ capacities

are decremented by one. These PIPs and wires are subsequently removed from

the set of wires to be tested, then the algorithm runs again until k = 0. This is

furthermore globally repeated with s′ → s and t→ t′ reinitialized to k for a different

test configuration until all edges are removed from the set of edges to be tested [36].

The limiting factor for this algorithm is k; the number of flip-flops per CLB

[36]. This is circumvented by interleaving the test pipeline; that is, not every wire

is buffered after every PSM. This provided a reported improvement from 60 to 8

configurations [36].

Although the authors report a fast run-time of the algorithm, it lacks any uti-

lization of the inherent symmetry found in FPGA PSMs.

3.2.2.4 Graph Edge Coloring Approach

With Virtex FPGAs in mind, an automatic interconnect test configuration gener-

ation method based on graph edge coloring algorithms is introduced in [37]. The

interconnection of CLBs to the routing network is modeled using a graph follow-

ing the schematic shown in Fig. 3.15. CLB inputs pass through an input routing

matrix (IRM) whereas the outputs are routed through an output routing matrix

(ORM). The next stage is a global routing matrix (GSM) which corresponds to a

PSM according to naming convention in this text. This connects each CLB to the

global interconnect network [37].

Each switch matrix (I/O/GRM) is modeled using a bipartite graph where wire

segments are represented by vertices and PIPs by edges [37]. Note that this is

the opposite of what was adopted in the max-flow algorithms [35, 36]. A bipartite

graph is one that has two groups of nodes and a node can only be connected to

3.2. Interconnect Test Approaches 31

ORM

IRM

Figure 3.15: Schematic of the interconnect routing structure

another node if it is not in the same group; that is, the two groups of nodes are

disjoint [37]. These two disjoint sets model the input and output wire segments

to a switch matrix, while an edge between two nodes signifies that a connection is

possible between them [37]. The bipartite graphs of each switch matrix are then

combined into a k-partite as shown in Fig. 3.16 to model the entire interconnect

network.

O1

O1

X1

X2 E

W

N

S

I3

I1

I2

ORM GRM IRM

Wires

between

CLB and

ORM

Wires

between

ORM and

GRM

Wires

between

GRM and

IRM
Wires

between

IRM and

CLB

Figure 3.16: k-partite graph representing interconnects

For finding the test configurations, and edge coloring problem is solved on the k-

partite graph [37]. That means, all the edges are colored such that no two connected

edges have the same color. When the minimum coloring is achieved, each color

represents a different test configuration guaranteeing full coverage using a minimal

or near minimal set of TCs [37].

It is unclear why the derived test configurations required two test phases in

which only half the FPGA was tested at a time while the other half is configured as

TPG/ORA [37]. The results were reported as 26 configurations for an unspecified

model of Virtex FPGAs [37].

Chapter 4

Fault Model

Contents

4.1 The Cell Fault Model . 33

4.1.1 Definition and Assumptions 34

4.1.2 Example Fault List Derivation 34

4.1.3 Lookup Table: LUT Mode Fault List 35

4.2 Functional RAM Fault Model 36

4.3 Functional Shift Register Fault Model 37

4.3.1 Flip-Flop Fault List . 37

4.4 Stuck-At Faults . 38

4.5 Complete CLB Fault List . 39

The stuck-at fault model is widely adopted in the literature for FPGA test-

ing [13]. It is suitable for a simplified abstraction of structural defects for all

known structural implementation information. Unfortunately, most FPGA sub-

components such as LUTs and flip-flops have hidden implementation details since

their intellectual property (IP) is proprietary. This usually results in a weak mod-

eling of defects and a reduced number of faults.

In this thesis, the stuck-at fault model is assumed for components and inter-

connections in which no additional structural/functional details are relevant for

fault derivation. On the other hand, any additional structural/functional knowl-

edge is used to derive an additional list of faults which models the component in a

more accurate way. For example, functional RAM faults are accounted for such as

transition and coupling faults.

This chapter is organized into sections, each of which introduce the fault model

used for each component; starting with the functional faults, then the stuck-at fault

model is used for the remaining units. After that the faults are compiled in a list

separated into structural and functional faults assumed for an entire CLB.

4.1 The Cell Fault Model

The cell fault model (CFM) [38, 39], also called the black-box fault model [40, 41]

is used for modeling combinational faults for LUTs in LUT mode (function mode).

In this section, after defining the fault model, the suitability of this model for LUT

testing is explained.

33

34 Chapter 4. Fault Model

4.1.1 Definition and Assumptions

CFM is an exhaustive functional fault model which makes no assumptions on the

structure of the CUT; it models any fault which causes a deviation from correct

combinational behavior. For a given “cell” under test, the CFM assumes that any

output other than the expected one constitutes one or more combinational faults

inside the cell under consideration [39]. This erroneous cell output is termed a cell

fault. No additional information on the number of internal defects, their type, or

location is available. Furthermore, only a single “cell” is allowed to be faulty at a

time; but the fault can modify the cell function in any arbitrary combinational way.

The CFM is much more thorough than the traditional stuck-at fault model [39]

since it models any fault that would alter the function of a cell. All single and

multiple stuck-at faults inside a faulty cell are tested for as a subset of all cell faults

that may occur. In addition, it is suitable for the IP design paradigm because the

circuit implementation can be kept hidden. It also does not matter which vendor

library is used for the implementation of the cell [39]. In addition, faults in the

interconnects of a cell are implicitly accounted for.

One disadvantage of the CFM is the need for an exhaustive test of the cell

under test, i.e. all the input combinations must be exercised for full coverage of

CFM faults.

For any cell, such as that shown in Fig. 4.1, the number of cell faults can be

derived. A cell fault is one that alters the function of the cell as stated previously.

That is, a fault which forces a different output than the expected one. With that

in mind, the number of different inputs are 2m each of which has only 1 fault-free

output but 2n−1 faulty ones. The total number of cell faults are therefore 2m(2n−1)

[39].

1

2

3

m

1

2

3

n

Figure 4.1: m-input, n-output cell

4.1.2 Example Fault List Derivation

The fault list is derived for a 2-input 1-output cell in Fig. 4.2; it consists of the list

of faulty outputs for each different input to the cell. The fault list is shown in Table

4.1. The number of cell faults are equal 2m(2n − 1) = 4 with m = 2 and n = 1;

there is one faulty output per input combination since there is only one output.

Note that the possible implementation shown in Fig. 4.2 plays no role in defining

the set of cell faults associated with the cell. This is to emphasize that CFM make

no assumptions on the underlying structural implementation.

4.1. The Cell Fault Model 35

X

Y

Z
Black

Box

X

Y
Z

Figure 4.2: XOR gate implementation and abstraction to a black box

X Y faulty Z

0 0 1

0 1 0

1 0 0

1 1 1

Table 4.1: List of cell faults for the XOR gate

4.1.3 Lookup Table: LUT Mode Fault List

The Virtex-5 FPGA LUT is implemented as two 5-input LUTs with a multiplexer

to choose between the two LUTs; the sixth input controls the multiplexer. This is

shown in Fig. 4.3.

It is mentioned at the beginning of this chapter that an exhaustive CFM ap-

proach will be applied to the smallest structures of which the implementation is not

known. Since this structure of the LUT is known and shown in Xilinx documenta-

tion [5], it will be adopted for the derivation of the associated fault list. Also note

that there are three different modes of operation for the LUT block: LUT, shift

register (SR) and RAM. For each mode, a set of faults will be derived based on the

functionality of the block in the relevant mode.

A5

A4

A3

A2

A1

O5

A5

A4

A3

A2

A1

O5

A6

A5

A4

A3

A2

A1

O6

O5

a) b)

A6

A5

A4

A3

A2

A1

O6

O5

LUT

SR

RAM

Figure 4.3: a) Virtex-5 LUT and b) details of its structure

In LUT mode the structure of the LUT is considered down to the most fine-

grained description available by the manufacturer; in this case, it is the device

36 Chapter 4. Fault Model

shown in Fig. 4.3. Without that knowledge, the number of cell faults would be

calculated directly as 26(22 − 1) = 192, because there are 6 inputs and 2 outputs.

After knowing these implementation details however the number of functional faults

for the LUT is derived as the sum of the cell faults for each sub-component. Note

that the “O5” output as well as the inputs A1-A5 have to modeled separately for

stuck-at faults since the wires fan-out. In general, faults at fanout branches are not

equivalent to faults at the stem and need to be explicitly handled.

The number of cell faults from each 5-input LUT are equal 25(21− 1) = 32 and

the 2-input multiplexer has 6 stuck-at faults whereas the fanouts have 10 stuck-at

faults. The total number of faults for the 6-input LUT in LUT mode is sepa-

rated into structural stuck-at faults and functional cell faults. Structural faults are

abbreviated as “SF” and functional faults are abbreviated “FF” throughout this

chapter.

SF (6LUT) = SF (2MUX) + SF (fanouts) = 18 (4.1)

FF (6LUT) = 2× FF (5LUT) = 64 (4.2)

This is a significant reduction from 192 cell faults to just 64 FFs and 20 SFs,

achieved by analyzing details of the available abstract implementation.

4.2 Functional RAM Fault Model

A RAM test is required to cover all functional errors of which a RAM module could

suffer. This work assumes be to follow the classic fault models associated with

RAM and therefore the following faults [42] are considered:

1. Address decoder faults (AF): Accessing the wrong address due to faults in

the address decoder.

2. Stuck-at faults: A memory cell is stuck on a ”0” or ”1” value.

3. Transition faults: The inability of a cell to switch from 0 → 1 (slow to rise)

or from 1→ 0 (slow to fall).

4. Coupling faults (CF): Memory cells assume an erroneous value depending on

the switching activity in neighboring cells.

5. Data retention faults (DRF): A memory cell fails to retain its data value after

some time.

Deeper analysis of RAM can lead to a more accurate set of fault models and there

is already progress in that area, but the extent presented is sufficient to this work.

Due to hardware overhead constraints, only the most important and dominating

faults will be accounted for. The reduced functional fault set for RAM in context

of this work is therefore defined as all AFs, SAFs and TFs in the memory cells. It

4.3. Functional Shift Register Fault Model 37

is experimentally proven in [42] that SAFs and stuck-open faults (SOFs) abstract

more than 72% of defects in a RAM module. These set of faults are assumed

to dominate other possible faults which could occur on the write enable or clock

circuitry, because of their functional impact on the RAM.

Consider the FPGA LUTs which can be configured in RAM mode. For an N-bit

RAM, there are n address inputs, a data-in input, a data-out input as well as the

clock and write-enable signals [5]. From the assumptions stated above, there are 2n

AFs, 2n+1 SAFs and 2n+1 TFs yielding a total number of functional faults:

FF (RAM) = 2n + 2n+1 + 2n+1 = 5× 2n = 5N (4.3)

Where N is the number of memory cells. For example, the Virtex-5 LUT can

support a 64-bit RAM with 320 functional RAM faults based on the assumptions

above. There exist many march test algorithms [42] which account for all the stated

RAM faults.

4.3 Functional Shift Register Fault Model

Although the same LUT structure is used for running LUT mode, SR mode and

RAM mode, a different set of faults are derived for each to guarantee functionality

in each specific mode. Fig. 4.4 shows a functional view of a shift register. It is an

interconnection of the LUT SRAM cells in series; these connections are not used

when in LUT mode or RAM mode since they are between SRAM cells and are not

connected to the LUT address decoder.

D Q D Q D Q D QDIN O6

CLK

Figure 4.4: Functional view of a shift register

In SR mode, as it is for flip-flop testing, the faults assumed are both kinds of

stuck-at faults in the sequential elements as well as the two transition faults (TF).

There are therefore four faults per flip-flop and they dominate the possible faults

on the interconnection between flip-flops. For a shift-register of length N the total

number of faults are equal 4N .

4.3.1 Flip-Flop Fault List

Similar to shift registers, transition faults and stuck at faults are considered during

flip-flop testing. Virtex-5 memory elements can be configured as either flip-flop or

latches and have the option of being initialized to “1” or “0”, and the reset (SR)

can either be active-high or active-low. This is shown in Fig. 4.5. The different

inputs and outputs are also shown, the are the clock (CK), reset, data-in (D) and

38 Chapter 4. Fault Model

data-out (Q) terminals as well as clock enable (CE) and reverse (REV); this writes

an opposite (reverse) value to that inferred from the reset input.

FF

LATCH

INIT1

INIT0

SRHIGH

SRLOW

D Q

CE

CK

SR REV

Figure 4.5: A Virtex-5 flip-flop

Two faults will be assumed on each input pin, a total of 10. In addition, there

are three control inputs: the mode (FF/latch), initial value (0/1), and the active

reset level (high/low). The INIT(0/1) and SR(LOW/HIGH) will be considered as

inputs similar to REV and CE; they each have two associated faults. However, it

will be assumed that all the inputs and outputs have to be tested in each mode

(FF/latch). The structural faults equal 7× 2× 2 = 28 since there are seven inputs,

assumed to be disjoint, having two SAFs each, and it is multiplied by two again

to reflect both FF and latch mode. In addition there are two transition faults

introducing four additional functional faults. (SF=28, FF=4)

4.4 Stuck-At Faults

Following the discussion of functional faults, three elements from the CLB remain

unaccounted for. Multiplexers, XOR cells and some of the wires which connect all

the components together in a CLB. Structural SAFs are systematically derived for

these components.

XOR gates are used in the carry chain in a Virtex-5 CLB. There are three

terminals in an XOR gate each having two possible stuck-at faults. Unlike AND/OR

gates, the XOR gate has no controlling value, so none of the six SAFs are equivalent.

The faults are annotated in Fig. 4.6 as “0” for SA-0 and “1” meaning SA-1.

Figure 4.6: XOR gate stuck-at faults

Multiplexers are a slightly different case. For a 2-input multiplexer (Fig. 4.7),

the faults at the output are dominated by the SAFs on the inputs. If the select

input is equal “0”, if the output is SA-0 for example; this indicates whether a SA-0

on the data input or the output occurs, suggesting that these faults are equivalent.

4.5. Complete CLB Fault List 39

Figure 4.7: 2-input multiplexer stuck-at faults

It is assumed that all faults on the wires entering a component are dominated

by the faults in the component itself. At fanouts, the faults have to be accounted

for separately as shown in Fig. 4.8. At buffers, faults at the input and output are

also considered equivalent.

Figure 4.8: Stuck-at faults in fanouts

4.5 Complete CLB Fault List

Fig. 4.9 gives an overview of the hybrid fault model assumed for the FPGA logic

elements. The stuck-at fault model is used for modeling structural faults. Func-

tional faults are also accounted for using a set of component specific functional fault

models. The CFM is used for exhaustively modeling combinational faults in the

LUT whereas more specific fault models are used to abstract defects in the RAM

and flip-flops.

RAM Flip-flopLUT

Stuck-At
Fault Model

Functional
Fault Model

Cell Fault Model:
Abstracts any
deviation from correct
combinational
behavior

Functional Faults:
-Stuck-at faults
-Address decoder
-Transition faults
-Coupling faults
-Data retention faults

Functional Faults:
-Stuck-at faults
-Transition faults
-Data retention faults

Hybrid Fault
Model

Figure 4.9: Overview of the hybrid fault model

40 Chapter 4. Fault Model

At this point it is important to note that there are many structures tested twice

when testing the LUT in the different modes stated above. For instance, SAFs

are accounted for in all three modes. These faults are considered multiple times

to ensure that the LUT gives a functionally correct output in each of the different

modes of operation and also increases coverage of faults in the control circuitry

which configures the LUT. These faults are however not included in the fault lists

derived because they are assumed to be dominated by the aforementioned faults.

For example, if the control circuitry is stuck on LUT mode but RAM mode is used,

the output will certainly not be as expected while preforming a RAM test such as

MATS+. In addition, no details of the control circuitry is available.

Now that the assumed faults are defined for each CLB component, their sum

is calculated to find the total number of faults assumed for a complete CLB, to be

used for fault coverage calculation. This is under the assumption that all faults are

observable and all inputs are controllable so that each component is fully tested.

This is taken care of later in devising the test configurations.

Fig. 4.10 shows one quarter of a slice which is one half of a CLB. Two types

of slices exist: sliceM, which includes RAM/SR mode and sliceL which does not.

In addition to components in Fig. 4.10, there is a clock multiplexer which has the

option of inverting the clock, a carry-out buffer and a carry-in buffer [5]. Further-

more, there is a carry initialization MUX and three fixed MUXs for advanced CLB

functions, but these are disregarded in this work.

O6

O5

XOR

CY

O5

AX

XOR

CY

O6

FF

LATCH

INIT1

INIT0

SRHIGH

SRLOW

D AQ

O5

AX

A6

A5

A4

A3

A2

A1

O6

O5
LUT

SR

RAM

AX

A

AMUX

Figure 4.10: Simplified “quarter” CLB circuit diagram

The total number of faults are compiled in Table 4.2. They are split into struc-

tural faults and functional faults according to the analysis in this chapter. Faults

are derived manually from the limited structural knowledge available from Xilinx.

Thus, they shall only serve as a means to roughly asses the fault coverage of the test

configurations presented later in this thesis. The goal from this work is to provide

100% coverage of the mentioned faults.

4.5. Complete CLB Fault List 41

Component Mode SAFs Cell Faults SR/FF Faults RAM Faults

Lookup Table

LUT 18× 4 64× 4 - -

SR - - 128× 4 -

RAM - - - 320× 4

Flip-Flop
FF 14× 4 - 2× 4 -

Latch 14× 4 - 2× 4 -

Output MUX - 12× 4 - - -

Flip-flop MUX - 16× 4 - - -

Carry-in MUX - 6× 4 - - -

Carry-out MUX - 6× 4 - - -

Carry XOR - 6× 4 - - -

Wires

O6 2× 4 - - -

AX 2× 4 - - -

COUT 2 - - -

CLK 2 - - -

CE 2 - - -

SR 2 - - -

CLK MUX - 6 - - -

CINMUX - 8 - - -

SYNC/ASYNC - 2 - - -

Total sliceM 408 256 528 1280

Total sliceL 408 256 16 -

Total CLBLL 816 512 32 -

Total CLBLM 816 512 544 1280

Table 4.2: Summary of CLB faults

Chapter 5

CLB Test

Contents

5.1 CLB Test Architecture . 43

5.1.1 Test Methodology . 44

5.1.2 BIST Architecture . 45

5.1.3 Testing Iterative Logic Arrays 46

5.2 CLB Subcomponent Tests . 48

5.2.1 Lookup Table - LUT mode 49

5.2.2 Lookup Table - SR mode . 50

5.2.3 Lookup Table - RAM mode 51

5.2.4 Multiplexer . 52

5.2.5 Fast Carry Chain . 52

5.2.6 Latches . 53

5.3 Global CLB Test Optimization 54

5.3.1 Generalization for CLBs . 54

5.3.2 Set-Cover Heuristic . 55

5.3.3 TC Optimization Shortcomings 56

Several CLB test approaches are found in the literature and are explained in

Chapter 3. The various methods show a trade-off between test speed, diagnosability

and BIST hardware overhead. The approach taken in this work is array testing for

FPGA logic following the concepts presented in Section 3.1.2.

This chapter starts with an overview of the test methodology and BIST architec-

ture used. An abstract explanation of testing iterative logic arrays is also presented.

The details of testing each logic subcomponent are then explained, followed by the

CLB test optimization method.

5.1 CLB Test Architecture

A Virtex-5 CLB consists of many logic components such as LUTs, multiplexers and

flip-flops. They can be interconnected together in in many different combinations

reflecting different variations of using a logic slice. This necessitates the use of

multiple test configurations for complete controllability and observability of the

components under test. The FPGA is reconfigured multiple times into so-called

43

44 Chapter 5. CLB Test

test configurations (TC) in which each TC is able to test a subset of the complete

logic slice. Full coverage of faults inside the logic is ensured by deterministic design

of TCs.

This section presents the general test methodology before going into the BIST

architecture used including an explanation of the TPGs and ORAs used.

5.1.1 Test Methodology

In FPGAs, a container under test requires multiple reconfigurations for full-coverage

testing. Each reconfiguration targets a specific subcomponent in each logic slice. A

single TC consists of two main components:

1. Container setup: Logic slices are configured in a specific way to ensure the

test of specific subcomponents.

2. BIST infrastructure: TPG and ORA for each container setup.

After designing an appropriate set of TCs, bitstreams are generated according

to the container size and they are repeatedly configured onto the FPGA and tested.

This configure-test cycle is repeated for the number of TCs designed for full coverage

of CLB faults. The process entails the following steps (illustrated in Fig. 5.1):

FPGA

Container

TC1

TPG1

ORA1

1 2

FPGA

Container

3-6

TC1

Apply

test

Check

response

Figure 5.1: Container test procedure

1. Specify container: A container can be of any rectangular size on the FPGA

specified by any two coordinates.

2. Generate TCs: Bitstreams containing the container setup and BIST hardware

are generated.

3. Download TCi: The container under test is configured with each TC.

4. Apply test patterns: For each TC, the suitable test patterns are applied from

the TPG.

5.1. CLB Test Architecture 45

5. Evaluate test responses: For each TC, the response is gathered and input to

an ORA.

6. Repeat steps 3 to 5 until all TCs are processed.

5.1.2 BIST Architecture

The need for a simple test method/architecture comes from the basic structure of

the FPGA. While FPGAs are getting more complex on a CLB level, they maintain

their array architecture. This array structure needs to be exploited for creating

a general test architecture extensible to any FPGA architecture. Furthermore, it

is discussed in Chapter 3 that array testing of FPGAs has the lowest hardware

overhead and test time at the expense of a lower diagnosability. PRET is only

concerned with fault detection and not localization or diagnosis making an array

test for it most suitable.

Concepts from array test are used for testing the FPGA fabric. Combined with

the test approach outlined in the previous section, this leads to a straightforward

test technique which is easily scalable and portable to other FPGA architectures.

In addition, tests are pipelined to ensure high test application speeds.

5.1.2.1 Container Setup

Each CLB is configured using the designed set of TCs. Each TC is designed such

that the logic slices can be connected into a C-testable array. This is shown in Fig.

5.2 with TC1 placed in the CLBs. A TPG then feeds the test patterns at the start

of each array and the responses are collected at the end of the array using an ORA.

1 1

1 1

1 1

1 1

1 1

1

1

1

1

1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

11

TPG ORA

a)

b)

Container

Container

Figure 5.2: a) Empty container and b) configured into arrays

This topology allows the usage of very simple comparison-based ORAs. The

ORA is therefore the same for all different TCs whereas the TPG is test-specific

46 Chapter 5. CLB Test

for the most part. Comparison-based ORAs are implemented using XOR gates for

detecting single errors. For an even number of arrays, the outputs are compared

using an XOR gate. For an odd number of outputs, a combination of XOR/OR

gates are used as shown in Fig. 5.3 to avoid masking of errors.

D Q
+

D Q D Q

a)

b) c)

Comparison Storage

Figure 5.3: a) Comparison-based ORA for b) four and c) three array outputs

The comparator must only ensure that a “0” is output when all array outputs

are identical and “1” otherwise. The logic circuit can then easily be derived from

the truth table describing that functionality. After the comparison stage, there is

a storage stage as shown in Fig. 5.3. This makes sure that each result is saved in

the ORA flip-flop to have a single value at the end of a test-run indicating whether

a fault is detected.

5.1.2.2 Test Pipelining

Configuring CLBs into arrays can lead to a very long critical path for large con-

tainer sizes. This dictates the use of very slow test clocks which are additionally

dependent on the container size. To avoid these limitations, the test configurations

are pipelined, allowing tests to run at system speed (MHz) instead of kHz. This is

demonstrated in the results section to provide an increase in test speed in the order

of 1000− 10000.

The way to pipeline logic tests is by utilizing the sequential elements included

in each logic slices. For an exhaustive test, the unregistered outputs must also be

tested. To allow that, an array interleaving scheme such as that shown in Fig. 5.4

is used [20].

5.1.3 Testing Iterative Logic Arrays

The concept of testing arrays is very old [38]. It has been shown in [24, 38] that

upon the fulfillment of some conditions. An array of arbitrary size is fully tested

by applying exhaustive test patterns at the inputs of the first cell and observing

5.1. CLB Test Architecture 47

a)

b)

FF

LUT

FF

LUT

FF

LUT

FF

LUT

FF

LUT

FF

LUT

FF

LUT

FF

LUT

Figure 5.4: a) Partially pipelined and b) fully interleaved/pipelined CLB arrays

the output at the end of the array. Furthermore, these conditions are imposed on a

unit cell which is replicated throughout the array. This is precisely the definition of

C-testability. A C-testable array is one that can be fully tested with a fixed number

of input patterns for any finite length of the array [24].

5.1.3.1 Conditions for C-testability

Two general conditions must hold when testing for single faults in a logic array [38]:

− Condition 1: Each cell in the array must have an exhaustive set of test

patterns applied at its inputs.

− Condition 2: For each test pattern mentioned in condition 1, the output of

a cell must be sensitized until the array output, or some other intermediate

output present without disturbing the array structure.

Taking these conditions into account, more specific constraints can be specified

for an ILA such as the one depicted in Fig. 5.5. Although this is not the gen-

eral model for a logic array (potentially having intermediate outputs or being two

dimensional), it is sufficient for representing the CLB components.

C1 C2 Ci

x xN

z

CR

Figure 5.5: A one dimensional logic array of length R

In Fig. 5.5: x is the cell state , xN is the next state resulting from the function

of a cell Ci and z represents any number of external inputs to each cell.

The first cell C1 in an array always has condition 1 satisfied because its inputs

are controllable, being at the beginning of the array. As for the second cell C2, it

is required that the propagating value xN takes on all possible values of x. This

48 Chapter 5. CLB Test

will guarantee that all the test patterns applied to C1 will also be applied at the

inputs of C2, guaranteeing that it will also be exhaustively tested. This constraint

also holds for all other cells and can be generalized for the entire array. In terms

of the flow table for the cells Ci, this means that every input combination x must

also appear in the output xN .

The second condition states that the output of each cell must be sensitized until

a primary output. This ensures observability of detected faults in each cell. In Fig.

5.5, there is only one primary output at the end of the array which is the worst

case. For the last cell CR, this is no problem since we can directly observe the cell

outputs. As for the cell before the last CR−1, there has to be at least one z input

combination which will change the value of xN when x changes. This is sufficient

to expose an error in cell CR−1, and similarly this condition is generalized for all

previous cells Ci. In terms of a flow table, this means that no two rows are allowed

to be identical. These conditions are now restated:

− Condition 1: xN must assume all the values of x. That means that all x

must appear in the flow table outputs xN .

− Condition 2: There must be at least one z combination which sensitizes the

path from x to xN . That means that no two rows can be the same in the flow

table.

These conditions are illustrated with an example. A very simple case of an

iterative array is the parity checker shown in Fig. 5.6. The corresponding flow

table is shown in Table 5.1. It is obvious from this simple example that both

conditions are satisfied since all values of x show up in the table and no two rows

are identical. This array is therefore C-testable. By applying the exhaustive input

patterns, all errors can be observed at the array output.

x

xN

z

Figure 5.6: Parity checker cell and array

5.2 CLB Subcomponent Tests

In designing tests for CLBs the “divide & conquer” approach is adopted. Each CLB

subcomponent is handled separately and tested for all the faults associated with

it (structural/functional) in Chapter 4. The CUT consists mainly of the structure

5.2. CLB Subcomponent Tests 49

z

0 1

x
0 0 1

1 1 0

Table 5.1: Flow table for XOR cell

illustrated in Fig. 5.7 which is repeated four times in a logic slice. It shows the

basic building blocks of a CLB.

O6

O5

XOR

CY

O5

AX

XOR

CY

O6

FF

LATCH

INIT1

INIT0

SRHIGH

SRLOW

D AQ

O5

AX

A6

A5

A4

A3

A2

A1

O6

O5
LUT

SR

RAM

AX

A

AMUX

Figure 5.7: Simplified “quarter” CLB circuit diagram

In this section, the test for each of the subcomponents is presented separately. In

addition, the implementation of a test optimization technique from [27] is presented.

5.2.1 Lookup Table - LUT mode

Implementation details of the LUT are proprietary and unavailable for this work.

Structural testing comprises only of testing for SAFs on the inputs and outputs.

However, the more comprehensive cell fault model is adopted for this component to

ensure higher fault coverage by testing for all single/multiple internal combinational

faults.

This dictates the application of an exhaustive set of test patterns on the inputs.

There are six inputs for the Virtex-5 LUTs resulting in a total of 26 = 64 different

input combinations.

From a functional point-of-view, an LUT consists of memory elements in which

the truth table values of an arbitrary 6-input function are stored. These truth table

values are then selected by the function inputs using a large multiplexer thereby

implementing that function. The stored truth table values are configuration inputs

while the inputs of the function are data inputs. A conceptual illustration describing

the function of a 2-input LUT is given in Fig. 5.8.

In LUT mode, the inputs are comprised of A1, A2 and the output AOUT . These

are used to implement any arbitrary 2-input function. In addition to testing that

function exhaustively following the CFM, two complementary functions must be

50 Chapter 5. CLB Test

D Q D Q D Q D Q
DIN

CLK

DOUT

A1

A2

AOUT

00 01 10 11

DIN

CLK

A1

A2

AOUT

DOUT

2-input

LUT

Figure 5.8: Functional view of a 2-input LUT

used to test for SAFs in the configuration bits. It would suffice to use the all 1’s and

all 0’s functions for testing a single LUT. However, the XOR/XNOR configurations

are used instead since they can be connected into C-testable arrays [13].

For an arbitrary number of inputs n, an LUT requires 2 configurations and 2n

test patterns. However, test pattern application is much faster than configuration

time. A third configuration can be added such that the LUT is configured as XOR-

XNOR-XOR to test additionally for all transition faults in the memory cells [13].

0

{0,0,1,1}

1 1 0

{0,1,0,1}

1

{0,0,1,1}

0 0 1

{0,1,0,1}

a) XOR b) XNOR

Figure 5.9: LUT testing configurations

5.2.2 Lookup Table - SR mode

In LUT mode, the multiplexer and its inputs/outputs are tested. In SR mode,

the flip-flops are configured into a long shift register. According to the assumed

fault model, transition faults are tested for in addition to the stuck-at faults. Well-

known scan chain testing patterns [43] are used to account for the fault model. The

“01100” test pattern is used because it contains the transition from 1→ 0 and vice

versa. It also tests for a subset coupling faults.

The LUTs in SR mode are simply connected into multiple scan chains of which

the outputs are compared together for response evaluation as before. To minimize

test configurations, the flip-flop on each slice can be simultaneously tested in the

same TC by interconnecting them between shift registers as depicted in Fig. 5.10.

5.2. CLB Subcomponent Tests 51

D Q
Shift Register

D Q

D Q D Q

D Q D Q

From

TPG

To

ORA

Shift Register

Shift RegisterShift Register

Shift Register Shift Register

Figure 5.10: Interconnection of LUTs (SR mode) with flip-flops in arrays

This is an example of test multiplexing in which more than one CLB subcom-

ponent is tested in the same TC. This is desirable to reduce the number of TCs as

much as possible.

5.2.3 Lookup Table - RAM mode

RAM testing is quite mature. There exists march test algorithms for coverage of

functional RAM faults as outlined in Chapter 4 [42, 2]. Depending on the march

algorithm, there is a trade-off between test time/BIST overhead and coverage. The

following table (adapted from [2]) outlines the various algorithms and coverage. (n

is the size of the RAM)

Algorithm
Coverage

Cycles
SAF AF TF CFin CFid CFdyn SCF LF

MATS All Some - - - - - - 4n

MATS+ All All - - - - - - 5n

MATS++ All All All - - - - - 6n

MARCH X All All All All - - - - 6n

MARCH C- All All All All All All All - 10n

MARCH A All All All All - - - Some 15n

MARCH Y All All All All - - - Some 8n

MARCH B All All All All - - - Some 17n

Table 5.2: March tests coverage summary

Each LUT can implement a 64-bit RAM. Test patterns are generated at a global

TPG implementing the MATS++ algorithm to ensure coverage of all SAFs, AFs

and TFs. Note that only 5n operations are required instead of 6n because the

initialization step can be specified in the TC bitstream.

Each slice contains four LUTs. Test response analysis is done by comparing

the output of these four RAM components together, then all the ORA signals are

52 Chapter 5. CLB Test

collected using a long array of OR gates to the global ORA. This is possible because

there are two types of slices (sliceM and sliceL). Only sliceM can implement RAM,

so comparison and compaction can be interleaved and is done on the sliceL’s in

each CLB.

5.2.4 Multiplexer

Testing the multiplexer is simple. Exhaustive configurations are applied to test all

select combinations and the data inputs/outputs are tested for SAFs by applying

the 0 and 1 patterns. Multiplexer testing is always incorporated in other tests since

it has to be used for routing the signals from the LUT or carry chain to the slice

outputs.

00

A

B

C

D

Y

10

A

B

C

D

Y

01

A

B

C

D

Y

11

A

B

C

D

Y

{0,1}

{0,1}

{0,1}

{0,1}

Figure 5.11: TCs for a 4 input multiplexer

The multiplexer test is identical to the LUT with the data and configuration

inputs switched. For an n-input multiplexer: n configurations are required with two

test patterns for each configuration.

5.2.5 Fast Carry Chain

Each slice contains a four-stage fast carry chain. It consists of static multiplexers

and XOR cells. For both, the structural stuck-at fault model is assumed. The same

test constraints apply, namely, interconnection in pipelined C-testable arrays.

Fig. 5.12 shows a two stage carry chain where the inputs are wither connected

to “A” or “X”. The figure shows that all test patterns for the XOR gate are reached

using these configurations. Configuration into arrays is reduced to a simple parity

tree.

X

X

S0

S1

X

X

A

A

X

A = 0

X

X

S0

S1

X

X

A

A

X

X = 0,1

A = 1

X = 0,1

Figure 5.12: Two-stage carry chain under test

5.2. CLB Subcomponent Tests 53

It remains to test the carry-out terminal of each slice. It has a dedicated inter-

connect to the carry-in terminal of the neighboring slice. This is done by connecting

each column in a long carry chain and propagating the 0 and 1 values through it

to test for both variants of SAFs. A flip-flop is used at the end of each column to

pipeline the test as well.

TPG

ORA

Four-stage

carry chain

COUT

CIN

Figure 5.13: Pipelined test setup for the carry chain

5.2.6 Latches

Flip-flop testing is identical to testing the LUT in SR mode. However, the sequential

elements in each slice can be additionally configured as level sensitive latches. A

separate test is required to guarantee proper latch function. The test setup is shown

in Fig. 5.14.

FF

LATCH

D Q

CLK

FF

LATCH

D Q

CLK

FF

LATCH

D Q

CLK

FF

LATCH

D Q

CLK

CLK_A

CLK_B

TPG ORA

CLK_A

CLK_B

(CLK_A)(CLK_B)

a)

b)

Figure 5.14: a) Scan chain of latches and b) two non-overlapping clocks for latch

test

54 Chapter 5. CLB Test

Since the function of the latches needs to be verified, two non-overlapping clocks

are used as input to the scan chain. Odd-numbered latches use “CLK A” while

even-numbered latches use “CLK B”. This ensures that the function of the latches

is correct in addition to testing for all SAFs and TFs. The same test pattern used

for the flip-flops (01100) is also used for testing the latches [43].

Note that the opposite clocks are used in the TPG and first element to make

sure that timing is satisfied between them. The same is done with the last element

and the ORA.

5.3 Global CLB Test Optimization

The CLB test optimization technique [27] (Section 3.1.4) minimizes the number

of TCs by deriving conditions for fault coverage and covering these conditions by

a minimal number of TCs. It is demonstrated that it can automatically derive

necessary configurations for a full-coverage test of a network of multiplexers. This

can be extended for an entire CLB [27].

5.3.1 Generalization for CLBs

Necessary test configurations are derived for each component. For example, an LUT

requires at least four different TCs (XOR, XNOR, SR, RAM) for full coverage of

its operation modes. This can be encoded using two configuration bits as shown in

Table 5.3.

Boolean Encoding Test Configuration

00 XOR

01 XNOR

10 SR

11 RAM

Table 5.3: Boolean encoding of LUT TCs

The different LUT modes can then be modeled using a multiplexer as well. The

same procedure is done to model the different modes of the sequential elements [27].

To prepare the circuit for deriving its boolean testability conditions, the following

circuit model (Fig. 5.15) is used based on the mentioned conventions.

Note that the modes for the sequential elements use different multiplexers. This

is because each of the configuration bits is disjoint with the other and they can be

tested simultaneously. The paper [27] lacked an implementation for the optimization

problem. A heuristic is introduced in the following subsection.

5.3. Global CLB Test Optimization 55

A6

A5

A4

A3

A2

A1

O6

O5
O6

O5

XOR

CY

O5

AX

XOR

CY

O6

O5

AX

Sequential

FF
Latch init1

init0
srlow

srhigh

XOR
XNOR

SR
RAM

Figure 5.15: Circuit diagram with operational modes modeled as multiplexers

5.3.2 Set-Cover Heuristic

As previously shown in Fig. 3.11, the TC optimization problem translates into a

set-cover problem. The goal is to find the minimum number of TCs which satisfy all

testability conditions. This is an NP-complete problem which can be solved directly

for small instances but requires a heuristic for practical instances to converge on

the optimal solution.

The used algorithm is displayed in Listing 5.1. This is a modified greedy ap-

proach in which covered entries in the set are first removed. This gets rid of ir-

relevant entries and reduces the search space considerably. The remaining configu-

rations are then filtered by systematically by removing each entry and checking if

the set still covers all the testability conditions. Finally, this procedure is repeated

multiple times with the set shuffled at the start of each new iteration. This is found

to improve convergence on the optimal result since the algorithm depends on the

ordering of elements. The number of iterations reflect the algorithm effort.

1 /* Number of iterations reflect the algorithm effort

2 * In this case 25 iterations are used */

3 for(int iteration = 0;iteration<25;iteration++){

4

5 /* Shuffle configSet at the start of each iteration to

6 * increase likelyhood of finding the optimum results */

7 Shuffle(configSet);

8

9 /* Eliminate all configurations which are covered */

10 for(int i = 0;i<configSet.size();i++)

11 for(int j=0;j<configSet.size();)

56 Chapter 5. CLB Test

12 if(j!=i && areCovering(configSet.get(i),configSet.get(j))){

13 configSet.remove(j);

14 if(j<i) i--;

15 } else j++;

16

17 /* Refine results: Starting from the smallest weight,

18 * remove the entries one-by-one and check if the

19 * configSet still satisfys all conditions, else dont remove */

20 for(int size=1;size<configSet.get(0).list.size();size++)

21 for(int i=0;i<configSet.size();i++)

22 if(getWeight(configSet.get(i).list)==size){

23 ConfigEntry c = configSet.remove(i);

24 if(!isSatisfyingSet(configSet))

25 configSet.add(i, c);

26 else i--;

27 }

28

29 /* Save minimum Set from current iteration

30 * if it is better than previous solutions */

31 if(configSet.size()<minList.size())

32 minList=configSet.clone();

33 }

Listing 5.1: Pseudo-random set cover heuristic

The heuristic found the optimal solution on three different circuits and had a

runtime in the order of seconds for larger circuits such as the Virtex-5 CLB. The

results are considered satisfactory.

5.3.3 TC Optimization Shortcomings

Although the obtained configurations were optimal, they are only suitable for testing

a single CLB. This conflicts with the general test approach followed in this thesis:

array-testing methodology with pipelined stages.

The results could be directly used if it is possible to incorporate the C-

testability/pipelining conditions in the boolean expressions for testability, this is

left as an open issue for further research. Meanwhile, a very simple solution would

be to place a multiplexer on the three outputs ensuring that only one of the outputs

is used per TC, which in turn makes sure that the CLBs can be configured into an

array.

Another shortcoming of the algorithm is the need to manually derive the boolean

testability conditions for each component. This is a tedious, time-consuming and

error-prone task. It would be very beneficial if these boolean expressions are auto-

matically derived from the CLB netlist which is out of the scope of this work.

Chapter 6

Interconnect Test

Contents

6.1 Interconnect Test Architecture 57

6.1.1 Generic Test Architecture . 58

6.1.2 Test Response Compaction 58

6.1.3 Test Pattern Generator and Output Response Analyzer . . . 59

6.2 Local Router . 60

6.2.1 Routing Algorithm . 60

6.3 WUTs Selection . 63

6.3.1 Systematic WUTs Selection 63

6.3.2 Automatic WUTs Selection 64

FPGA interconnect architectures are becoming very complex. There are many

different wire types varying in length, number of hops between connections, buffer-

ing and direction. In this work, a generic test infrastructure is developed to be able

to test any of the wire types. Wires are sorted according to type in each TC for the

systematic approach. An alternative implementation is the automatic approach in

which the wires per TC are algorithmically selected and multiple wire types can

be combined in one TC based on the same flexible BIST architecture. The critical

parameter in interconnect test generation is the routing of the specific wires to be

tested. Xilinx tools do not have the option of selecting which wires are used in

routing so a routing algorithm is implemented for that task.

In this chapter, the BIST architecture is introduced before going into the details

of the “local router” algorithm and implementation. The systematic method of wire

selection is then presented in detail and the automatic approach is introduced.

6.1 Interconnect Test Architecture

As outlined in Chapter 2, Virtex-5 FPGAs have an island-style interconnect scheme

consisting of at least six different interconnect types each in four directions. A

simple and generic BIST architecture is devised to test any combination of wire

types in the same test configuration. A more systematic approach is to test each

wire type/direction combination in a separate TC.

57

58 Chapter 6. Interconnect Test

6.1.1 Generic Test Architecture

An abstract view of the FPGA is shown in Fig. 6.1. Each PSM is shown with

two slices connected, as it is the case for Virtex-5 FPGAs. Each of the slices is

configured to a TPG or ORA as illustrated. This allows any wire types to be tested

simultaneously or separately.

WUTs

PSM

TPG

ORA

CUT

Figure 6.1: Interconnect test configuration

Fig. 6.1 shows a simple configuration of WUTs in which only single-hop, north

wires are configured for test. The same BIST infrastructure can support any number

or type of wires. The only constraint is the routability of these WUTs in the PSM

associated with each TPG/ORA pair. This is also detailed in this chapter.

6.1.2 Test Response Compaction

The outlined architecture consists of multiple CUT setups, one for each group of

WUTs. The test responses at the end of a test run are distributed over all the

ORAs. The purpose of PRET is detection of the errors and not their diagnosis so

all the ORA responses are compacted using a long OR array able to detect multiple

errors from the CUTs. It is also possible to use a scan chain to serially read out

the response data and localize fault location for diagnosis. However this is out of

the scope of this work.

Only stuck-at ans stuck-open faults are being considered for interconnects.

Stuck-open faults (SOF) occur when a wire is broken creating an open circuit while

SAFs occur when a wire is shorted to a ground connection or VDD. No layout in-

formation is available for proprietary FPGAs so any test for bridging faults will be

non-deterministic and does not guarantee good coverage of such faults. Inductive

fault analysis tools, that infer possible bridging fault sites, operate on the layout of

a circuit.

6.1. Interconnect Test Architecture 59

To

Global

ORA

From

previous

ORA

Figure 6.2: Interconnect response compaction

No CLBs outside of the container are being used for the test since all the

TPG/ORA circuits are configured within the container itself. Container CLBs

cannot be used by the system during test so there is no BIST hardware overhead

from this test architecture.

6.1.3 Test Pattern Generator and Output Response Analyzer

For SAFs/SOFs, complete coverage can be obtained only by using the two test

patterns 0 and 1. For that reason, all TPG nodes shown in Fig. 6.3 are identical.

Each of these nodes generates both the 0 and 1 patterns. Additionally the three

nodes can be used to generate an exhaustive set of test patterns (from 000 to 111)

to test for bridging faults. Because such a test is not based on layout information,

it does not guarantee coverage of realistic bridging faults.

Figure 6.3: One PSM in an interconnect test configuration

The ORA is similar to the comparison-based ORA used in the CLB logic test

illustrated in Fig. 5.3. Because all the TPG nodes are identical and synchronous,

60 Chapter 6. Interconnect Test

the same ORA can be used to compare any group of wires regardless of the type.

6.2 Local Router

The main challenge and limitation in creating an interconnect test template is

routing the specific WUTs to the TPG and ORA. The PSM has a finite number

of programmable resources used to route the connections between the TPG/wire

beginnings and ORA/wire ends. These programmable resources are called pro-

grammable interconnect points (PIPs).

Xilinx tools do not give the option of selecting wires to be routed in a design,

making it impossible to know which wires are being tested. This additional control

is crucial in creating interconnect test templates. Xilinx provide, however, a low-

level design language called XDL in which each net routing is specified.

A router is created to route the connections between the TPG→ wire beginnings

and ORA ← wire ends. This “local router” operates on a single PSM according to

the BIST architecture introduced and the resulting routing can be replicated for all

other PSMs in a container.

6.2.1 Routing Algorithm

The goal is to make valid connections from the TPG → wire beginnings and ORA

← wire ends and avoid routing conflicts. To represent the various nodes (TPG/O-

RA/wires), arrays are used. The arrays can have arbitrary sizes and are sorted

into pairs of arrays. There are four arrays: TPG/ORA/WIRE BEG/WIRE END.

Each of these arrays contains the respective set of nodes. The TPG/WIRE BEG

arrays are in one groups since their nodes are required to be connected together

and similarly the ORA/WIRE END arrays are in another group. Fig. 6.4 shows a

representation of such arrays and their corresponding nodes in the CLB and PSM.

PSM

TPG

ORA

TPG1

TPG2

TPG3

ORA1

ORA2

ORA3

BEG1

BEG2

BEG3

END1

END2

END3

a)

TPG= [TPG1,TPG2,TPG3]

Wire_BEG=[BEG1,BEG2,BEG3]

WIRE_END=[END1,END2,END3]

ORA=[ORA1,ORA2,ORA3]

Group 1

Group 2

b)

Figure 6.4: a) Interconnect test setup and b) array representation of nodes

These arrays are input to the routing algorithm which searches a graph repre-

sentation of the PSM PIPs for a valid route between nodes.

6.2. Local Router 61

Group 1 is first taken into account: all the paths are found for the first pair of

nodes, for example, between TPG1 → BEG1. The algorithm then marks the used

PIPs and moves on to the next two nodes in the first group: TPG2 → BEG2. All

possible paths are found and routing each path is checked for conflicts or if it is

valid. If a conflict exists, all possible paths and TPG2 → BEG2 cannot be routed

in the current configuration. The nodes are reordered into the next permutation

and all PIPs are again marked as unused. This time the algorithm will attempt to

route TPG1 → BEG2 for example as shown in Fig. 6.5.

PSM

TPG

ORA

TPG1

TPG2

TPG3

ORA1

ORA2

ORA3

BEG1

BEG2

BEG3

END1

END2

END3

PSM

TPG

ORA

TPG1

TPG2

TPG3

ORA1

ORA2

ORA3

BEG1

BEG2

BEG3

END1

END2

END3

PSM

TPG

ORA

TPG1

TPG2

TPG3

ORA1

ORA2

ORA3

BEG1

BEG2

BEG3

END1

END2

END3

Figure 6.5: Three different permutations when routing group 1

To increase the likelihood of routing, the pairs of nodes are first sorted in as-

cending order from the lowest number of paths to the highest. This allows the

node pairs with the weakest connections to be routed first and is shown to greatly

increase routability of a set of nodes as well as to improve on the routing speed.

For example, routing of the first permutation in group 1 is being performed and

the number of different paths for each pair is as it is listed in Table 6.1. To increase

likelihood of success, routing will be attempted in the following order: TPG2 →
BEG2 then TPG3 → BEG3 and finally TPG1 → BEG1. This is equivalent to

sorting them in ascending order of the number of paths.

Node Pairs TPG1 → BEG1 TPG2 → BEG2 TPG3 → BEG3

Paths 30 5 17

Table 6.1: Number of paths for node pairs from group 1

After successfully routing group 1, the next group is routed in the same way.

If routing fails, reordering of the groups is done (by trying all permutations) and

routing is attempted again as outlined. Note that the router can have an arbitrary

number of groups and nodes within each group.

To find all the possible paths between nodes, a depth-first graph traversal algo-

rithm (DFS) is implemented using recursion. The problem of finding all possible

paths between two nodes in a graph is a superset of the problem of finding the

longest path between two nodes. Both algorithms are NP-complete and their re-

spective algorithms have non-polynomial complexity. However, the PSM has a

limited search space, and DFS algorithm for finding all paths runs very quickly (in

62 Chapter 6. Interconnect Test

the order of milliseconds). The algorithm is shown in Listing 6.1.

1 public static void findPaths(node from, node to, Tile fromTile,

2 Tile toTile, LinkedList<node> path, HashSet<Integer> usedSet){

3

4 if(from.id == to.id){

5 /* Reached destination, append to list of paths */

6 pathsList.add(path);

7 }

8 else

9 {

10 /* Return all connections from this node */

11 WireConnection[] wireConns = fromTile.getWireConns(from.id);

12

13 if(wireConnections != null)

14 for(WireConnection w : wireConns){

15

16 /* Find current tile */

17 Tile currTile = dev.getTile(from.getRow()-w.getRowOffset(),

18 from.getColumn()-w.getColumnOffset());

19

20 /* Check that node was not traversed before

21 * and that the connection is being made in the same PSM

22 * and mark current node as traversed */

23 if(((currTile == fromTile)

24 || (currTile == toTile))

25 && usedSet.add(w.getWire()) == true)

26 {

27 /* Create current node from current tile */

28 node curr = new node(from, w.getWire(), currTile);

29 /* Depth first graph traversal

30 * Add the current node to the current path */

31 path.add(curr);

32 /* Recursion: traverse all children of current node */

33 findPaths(curr, to, currTile, toTile, path, usedSet);

34 /* Remove current from path and unmark as traversed */

35 path.remove(curr);

36 usedSet.remove(w.getWire());

37 }

38 }

39 }

40 }

Listing 6.1: Recursion to find all possible paths between two nodes

6.3. WUTs Selection 63

The term “routing conflicts” was mentioned but not defined so far. A routing

conflict occurs if a wire segment is being used by two different paths, or if a PIP

node is being driven by two different signals. Note that the same PIP can drive two

nodes but not the opposite.

Figure 6.6: Illustration of routing conflicts and allowed fanouts

Because all TPG nodes are identical, a single TPG node can drive multiple

WUTs. This option also improves on the number of WUTs per TC and provides

added flexibility to the router. A screen shot of routing three north PENT wires

and five south PENT wires is shown in Fig. 6.7.

WUTs TPG

ORA

PSM

Figure 6.7: Screen shot of WUT routing (taken from FPGA Editor)

6.3 WUTs Selection

The local router and presented BIST architecture are used at the core of intercon-

nect test generation in both wire selection methodologies presented here. Using

these basics, different interconnect test approaches can be realized. The choice

determines which wires are tested in each TC.

6.3.1 Systematic WUTs Selection

Wires are classified into different types based on their direction, number of connec-

tions and number of hops1. In the systematic approach, each wire classification is

1Wire classifications and naming conventions are explained in Chapter 2 and Appendix B

64 Chapter 6. Interconnect Test

handled in a separate TC [4]. The number of TC per wire classification depends on

the limitations in PSM routing. Furthermore, multiple wire classifications can be

tested in the same TC based on the presented BIST infrastructure.

This main advantage of this divide and conquer systematic approach is the

ease of designing and implementing the test templates. Fig. 6.8 shows a specific

systematic test for double lines in the east direction.

Start Middle End

Figure 6.8: Systematic test for double east wires

Routing in the PSM is separated into three parts: start, middle and end. In the

group at the start, only TPG → WIRE BEG connections are required to be made.

In the end group only WIRE END → ORA connections are necessary. The middle

group combines the connections in both the start and end groups. For double lines,

start and end portions are always two PSMs wide. For pent lines, these portions

have a width of five PSMs.

To determine whether a set of wires is routable in one TC, the middle group of

PSMs are critical. If the PSMs in the middle group have enough resources to route

the WUTs then this interconnect test template would be possible.

6.3.2 Automatic WUTs Selection

The flexible BIST architecture introduced in Section 6.1.1 supports simultaneous

test of multiple wire types. This added flexibility is expected to improve on the num-

ber of TCs since it adds an additional degree of freedom to the routing algorithm.

However this makes the implementation of the test templates more complicated

because there are many more variables to be taken care of.

Similar to the systematic approach, wire selection is done based on a single PSM

and replicated for the entire container based on the start/middle/end definitions

for each wire. To check whether a group of wires are routable, the PSM with the

intersection of all their middle portions must be routable. This is because it contains

the highest number of connections and its connections are a superset of the other

PSMs.

6.3. WUTs Selection 65

Heuristics can be used to sort the wires under test in a minimized number of

TCs based on their routability. The idea is to write an application that utilizes the

local router. This heuristic would attempt to maximize the number of WUTs per

TC thereby leading to a minimum (or near-minimum) set of TCs. This part is out

of the scope of this thesis and is left for future research.

Chapter 7

Implementation and Results

Contents

7.1 Design Tools . 67

7.1.1 Xilinx Design Language . 67

7.1.2 RapidSmith Java Framework 68

7.2 CLB Testing . 68

7.2.1 CLB PRET Tool Flow . 69

7.2.2 CLB Test Results . 70

7.3 Interconnect Testing . 74

7.3.1 Interconnect PRET Tool Flow 74

7.3.2 Interconnect Test Results . 75

Low level access to the FPGA circuitry and configuration is required for the

implementation of a structural test. This information is hidden from designers

because it is proprietary and protected by FPGA vendors. Not to mention that

the FPGA tool flow supports mainly high-level design entry to facilitate complex

designs and not low level access to each structure. A suitable implementation

platform achieves this much needed low level access to the FPGA for test template

implementation.

This chapter contains both the implementation details and obtained results.

The implementation is presented with details of the project framework and design

languages used. The results of the implemented tests are also discussed with respect

to test speed, BIST overhead and coverage.

7.1 Design Tools

7.1.1 Xilinx Design Language

Xilinx tools are designed to translate a hardware description language (HDL), such

as VHDL or Verilog, to a valid configuration bitstream for the FPGA. The typical

tool-flow is illustrated in Fig. 7.1, shown in blue.

Xilinx also provides access to the details of logic and interconnect configuration

without revealing any hardware information or bitstream encoding. This is done

through XDL [44]. Configuration for each component is provided in detail such that

each subcomponent can be configured in any of its possible modes of operation.

Exact placement and routing on the FPGA can also be specified for each instance.

67

68 Chapter 7. Implementation and Results

.VDHL .NGD .NCD .NCD .BIT

Synthesize Map PAR BITGEN

.XDL

Figure 7.1: Xilinx design cycle with XDL

Fig. 7.1 shows that XDL can be directly translated into a mapped or routed

netlist circuit description (NCD) file. This also brings the advantage of fast design

time because synthesis and mapping steps are not performed. Appendix A shows

code snippets of a slice configuration written in XDL highlighting its low level

configuration.

XDL files are used for design entry of the tests, but the FPGA structure itself is

defined in a set of text files called XDLRC. In these files, which are approximately 10

GB in size, each FPGA component is defined with its subcomponents, input/output

ports as well as the interconnection between them all.

Xilinx provides XDL and XDLRC so that it is possible for users and designers

to implement design tools. The main difficulty is that these languages are not

documented. However, XDL and XDLRC are human-readable and can be parsed

to extract information about the FPGA that is not possible in any other way.

7.1.2 RapidSmith Java Framework

The first step in implementing tests for the FPGA is to understand the XDLRC

FPGA description and parse it into a usable data structure that can be used in

designing tests. This has already been done in an open-source research tool called

RapidSmith [45]. This framework is implemented in Java.

In RapidSimth, the FPGA is defined into “tiles” each containing at most one

CLB and one PSM. There are functions to return the components in each tile. It is

also possible to find neighboring tiles and investigate which wires connect two tiles

together. In addition there are descriptions of PSMs including PIP connections and

wire beginnings and ends. This information is parsed from Virtex-5 XDLRC files

and are sufficient in creating low level tests.

7.2 CLB Testing

For testing the FPGA logic, a series of TCs are first generated from test templates.

This is based on the RapidSmith Java framework and is also implemented in Java.

The output is a set of XDL files. A script uses the Xilinx tools to translate the

XDL to NCD, then routes the design and generates the corresponding bitstreams.

7.2. CLB Testing 69

7.2.1 CLB PRET Tool Flow

The detailed tool-flow is shown in Fig. 7.2. First, the logic subcomponents are

selected for test, an exhaustive test can also be chosen covering all TCs. The next

step is to select the container size and this is done by specifying the coordinates at

the lower-left and upper-right coordinates of a rectangular container on the FPGA.

The coordinates correspond to CLB numbers. The tool uses this information to

return the valid sites in the container for each specific test.

The PRET tool then generates the TPG and ORA which are independent of

the container size because of the C-testability condition imposed on all test arrays.

All container sizes require the same number of test patterns. The container setup

is then created and finally placed in the valid container sites.

At this point, the nets are defined for the connections between TPG, ORA and

the container. However, routing is done later using the Xilinx PAR tool. Unlike

interconnect tests, routing does not contribute to the actual TC because the logic

itself is tested and not the extra-CLB wires. Bitstream generation is also done using

a Xilinx tool (BITGEN) because bitstream encoding is proprietary and can only be

done through the provided tools.

Select test types

or exhaustive test

Specify container

by the corner

coordinates

Generate TPG/

ORA

Place CUT

configuration in

container sites

Generate

container setup

Route test

configuration

Generate

bitstream

1.

2.

3.

4.

6.

Compatible sites for

CUT are returned

Determines test

coverage and speed

Using predefined

templates

Independent of the

container (C-testability)

Using Xilinx PAR

Time so far:

milliseconds

Using Xilinx BITGEN

TC

TC

T
P
G
/O

R
A

TC

TC

T
P
G
/O

R
A

TC

T
P
G
/O

R
A

TC

T
P
G
/O

R
A

TC

0100010101010

1010010101010

1010101010001

0101010011011

1100101011001

1010101010101

0101010100101

0100010101010101001

0101010100010100011

0100010101010101001

0101010100010100011

5.

7.

PRET

(Java)

Xilinx

Tools

XDL

XDL

XDL

XDL

NCD

BIT

0100010101010

1010010101010

1000101010011

Figure 7.2: CLB test implementation flow

70 Chapter 7. Implementation and Results

7.2.2 CLB Test Results

Nine TCs are sufficient for full coverage detection of the structural and functional

faults assumed for the CLBs. High test clock frequency is demonstrated as a result

of test pipelining. Furthermore, very low hardware overhead for BIST is achieved

because the array testing method is used.

7.2.2.1 CLB Results Summary

The test strategies introduced in Chapter 5 ensure a high test clock frequency

because all tests are pipelined. In addition, a low BIST overhead is achieved because

of the array testing method that uses just one TPG and a simple comparator-based

ORA. Table 7.1 lists the nine TCs. A brief description of each configuration is

stated along with the BIST overhead (in number of CLBs) and the operating test

frequency.

Test frequency ranges between 154 MHz and 225 MHz. The slower tests are the

ones in which flip-flop interleaving is employed. The critical path length becomes

two CLBs instead of one CLB in fully pipelined designs. This accounts for the

difference in test speed.

The BIST overhead is very low (one or two CLBs) for all tests except for the

RAM test. This is because all tests use simple counter-based TPGs while the RAM

test requires a more complex MATS+ test controller.

Table 7.2 shows the configuration of each subcomponent in the TCs. These extra

details are required to highlight that each subcomponent is tested in each possible

mode of operation. More details can be extracted from the actual implementation

files. When the LUT is configured as a helper this means that it may be used to

implement a transparent or inverting function, or generates specific values from its

two outputs to assist testing of other subcomponents.

TC Description of CUT
∼ BIST ∼ CLK

Overhead Frequency

1 LUT configured as XOR, connected to FF 2 CLBs 207 MHz

2 LUT configured as XNOR, connected to FF 2 CLBs 207 MHz

3 Carry MUX, interleaved with MUX and latch 1 CLBs 182 MHz

4 Carry MUX, interleaved with MUX and latch 1 CLBs 164 MHz

5 Carry XOR, interleaved with MUX and FF 1 CLBs 182 MHz

6 Carry XOR, interleaved with MUX and FF 1 CLBs 164 MHz

7 Carry-in/-out tested, multiplexed scan chain 1 CLBs 150 MHz

8 LUT configured in SR mode with slice MUX 1 CLBs 157 MHz

9 LUT configured in RAM mode with slice output 7 CLBs 195 MHz

Table 7.1: Description of CLB TCs, BIST overhead and CLK frequency

7.2. CLB Testing 71

T
C

L
U

T
F

li
p

-fl
op

O
U

T
M

U
X

F
F

M
U

X
C

A
R

R
Y

O
U

T
C
I
N
/
C
O
U
T

C
L

K
M

o
d

e
IN

IT
S

R
R

S
T

M
U

X
U

S
E

D
U

S
E

D

1
X

O
R

F
F

0
lo

w
as

y
n

c
-

O
6

-
-

-
cl

k

2
X

N
O

R
F

F
1

h
ig

h
as

y
n

c
-

O
6

-
-

-
cl

k
in

v

3
h

el
p

er
L

at
ch

0
h

ig
h

sy
n

c
C
Y

O
5

A
X

-
-

cl
k

4
h

el
p

er
L

at
ch

1
lo

w
as

y
n

c
O

5
C
Y

A
X

-
-

cl
k

5
h

el
p

er
F

F
1

h
ig

h
sy

n
c

-
X

O
R

O
5

-
-

cl
k

6
h

el
p

er
F

F
0

lo
w

sy
n

c
X

O
R

-
O

5
-

-
cl

k

7
h

el
p

er
F

F
1

lo
w

sy
n

c
-

A
X

-
-

ye
s

cl
k

8
S

R
-

-
-

-
O

6
-

-
-

-
cl

k

9
R

A
M

-
-

-
-

-
-

-
ye

s
-

cl
k

T
a
b

le
7.

2:
M

ar
ch

te
st

s
co

n
fi

gu
ra

ti
on

su
m

m
ar

y

72 Chapter 7. Implementation and Results

These results excludes certain advanced LUT multiplexing features available in

Virtex-5 FPGAs. Two, three or four LUTs are combined using two-input multi-

plexers to form larger LUTs. These multiplexers can be tested with an estimated

additional two or three TCs.

7.2.2.2 CLB Test Timing Analysis

CLB tests boast a high test clock frequency because they are pipelined. However,

the clock frequency drops with increasing container size. Timing reports are gen-

erated for different container sizes with both horizontal and vertical scaling of the

containers. The graphs in Fig. 7.3 and Fig. 7.4 illustrate these results.

The tests analyzed in Fig. 7.3 use container sizes of (columns × rows) 5 × 10,

5×20, 5×40, 5×80. This is to investigate vertical scaling of containers. It is shown

for the four plotted TCs that the test frequency drops with increasing container

size. This is expected because capacitive loading on the TPG signals increase. In

addition, clock routing becomes more complex. TC7 is the test of CIN/COUT in

which the pipeline length increases with number of rows; it is therefore most affected

by vertical scaling.

In Fig. 7.4, container sizes are 5 × 10, 10 × 10, 20 × 10, 40 × 10. TC1 and

TC9 show the expected behavior in which the clock frequency drops with increasing

container size. However the drop is lower than the one calculated for vertical scaling.

TC7 clock frequency stays constant because the number of rows (and therefore the

pipeline length) remain constant. The results for TC5 were unexpected because

there is a slight increase of frequency at the start. This can be attributed to

variations in the internal Xilinx tools.

50

70

90

110

130

150

170

190

210

230

250

0 50 100 150 200 250 300 350 400 450

Te
st

 C
lo

ck
 F

re
q

u
e

n
cy

 (
M

H
z)

Container Size (CLBs)

TC1

TC5

TC7

TC9

Figure 7.3: Effect of vertical scaling of container size on the test clock frequency

The red dashed line marks the size of the reconfigurable container already being

7.2. CLB Testing 73

50

70

90

110

130

150

170

190

210

230

250

0 50 100 150 200 250 300 350 400 450

Te
st

 C
lo

ck
 F

re
q

u
e

n
cy

 (
M

H
z)

Container Size (CLBs)

TC1

TC5

TC7

TC9

Figure 7.4: Effect of horizontal scaling of container size on the test clock frequency

used in previous works [1]. Test frequencies between 180 MHz and 220 MHz are

used for testing this container size.

7.2.2.3 Container Screen Shot

Fig. 7.5 shows a snapshot of CLB TC1 obtained from FPGA Editor [46]. The

TPG and ORA as well as the container are marked on the figure. This container is

placed with start coordinates CLB X20Y100 and end coordinates CLB X40Y140.

In total it contains 800 CLBs. The TPG and ORA are placed in the corner of the

FPGA as illustrated, they occupy just two CLBs.

Container

under test

TPG/ORA

Figure 7.5: Screen shot of a container under test (taken from FPGA editor)

74 Chapter 7. Implementation and Results

7.3 Interconnect Testing

Generating interconnect XDL templates is very similar to CLB tests. The main

differences are in configuring the TC routing. The local router separately routes

the WUTs before using Xilinx tools for routing the BIST infrastructure signals.

7.3.1 Interconnect PRET Tool Flow

Fig. 7.6 shows the detailed tool-flow for interconnect TC generation. There are two

main differences to the CLB test tool-flow concerning the routing of WUTs and

configuring the TPG and ORA.

Select test types

or exhaustive test

Specify container

by the corner

coordinates

Generate

TPG/ORA

Route WUTs

(Local Router)

Place TPG/ORA

in container sites

Re-entrant routing

for the rest of the

design (clk/rst/..)

Generate

bitstream

1.

2.

3.

4.

6.

Compatible sites for

CUT are returned

Determines test

coverage and speed

Router implemented in

Java

Inside Container, no

BIST overhead

Using Xilinx PAR

Time so far:

milliseconds

Using Xilinx BITGEN

TC

TC

TC

01000101010

10101001010

10101010101

01000101010

10011011110

01010110011

01010101010

0100010101010101001

0101010100010100011

0100010101010101001

0101010100010100011

5.

7.

PRET

(Java)

Xilinx

Tools

XDL

NCD

BIT

0100010101010

1010010101010

1000101010011

TC

TC

TC

XDL

TC

XDL

TPG

ORA

XDL

Figure 7.6: Interconnect test implementation flow

The first difference is that there is no additional BIST overhead because the

TPG/ORA are already configured inside each container. This makes up the con-

tainer setup for interconnect tests. Secondly, the routing step is split into two parts,

shown as steps 5 and 6 in Fig. 7.6.

After configuring the TPG and ORA, the WUTs are routed in step 5 using the

local router (presented in Section 6.2). Next, re-entrant routing using the Xilinx

7.3. Interconnect Testing 75

PAR tool is performed. This leaves the WUTs routing unchanged and routes the

infrastructure signals (e.g. CLK and RST) which do not contribute to wire-testing.

7.3.2 Interconnect Test Results

Interconnect testing is performed with systematic wire selection. It is implemented

for north/south PENT lines as a proof of concept. Three north PENT wires and 4

south PENT wires are multiplexed onto the same test configuration. A snapshot is

shown in Fig. 7.7.

WUTs

Unrouted

CLK/RST

signals

Figure 7.7: Screen shot of a container under test (taken from FPGA editor)

It is clear that the routed WUTs are very regular and in the vertical direction.

This is the result of the local router algorithm running on each PSM to configure

the north/south WUTs. Finally, the Xilinx PAR tool is used to route the CLK,

RST and other infrastructure signals.

There are a total of 6 pent wires in each direction, this TC tests covers 58.3 % of

the north and south pent lines. The test clock frequency is simulated at above 800

MHz for this test configuration. Other wires can be tested in the same procedure

to provide full coverage for interconnect wires.

Chapter 8

Conclusion

Contents

8.1 Summary and Main Contributions 77

8.2 Future Work . 78

8.1 Summary and Main Contributions

In the context of dynamically reconfigurable architectures, FPGA testing was re-

searched, developed and implemented. A runtime reconfigurable system is able to

reconfigure parts of the FPGA as HW accelerators during runtime. To assure reli-

able operation a PRET is scheduled to test the bare FPGA fabric each time before

configuration.

Literature in the field of FPGA testing was thoroughly reviewed at first. Knowl-

edge from the research, analysis and comparison of state-of-the-art FPGA test tech-

niques was gathered to determine an optimal set of tests that provide full coverage

testing of FPGA faults. The fault model itself was tailored to provide the most

meaningful and extensive coverage possible. The structural stuck-at fault model

was extended by a number of component specific functional fault models for RAM

and sequential elements. The cell fault model was assumed for LUTs. The result

was a hybrid fault model covering both structural and functional faults.

Array testing methods were used for CLB testing as it was found to have the

lowest hardware overhead and fastest run time among FPGA testing techniques.

An additional constraint was imposed on the test configurations to allow a high test

clock frequency: all tests were pipelined.

The developed test framework was implemented in Java with the help of Rapid-

Smith; an open-source tool which parsed FPGA descriptions into a usable data

structure. Nine TCs were sufficient for a full-coverage CLB test (excluding some

LUT multiplexing features). The TCs demonstrated a high test clock frequency

above 170 MHz and was shown to run in hardware on Virtex-5 FPGAs. In addi-

tion, a test optimization technique was implemented using a pseudo-random set-

cover heuristic shown to give optimal results for a Virtex-5 logic slice.

Interconnect testing was also considered. A flexible BIST architecture was de-

signed for testing any number or type of wires depending on routing constraints. A

routing algorithm (local router) was developed and operated on a single PSM for

77

78 Chapter 8. Conclusion

routing the connections between TPG→WUT-beginnings and ORA←WUT-ends.

A north/south pent-wire test template using the local router was implemented as

a proof of concept.

All the implemented tests were parameterizable so that they can be created

for an arbitrary container size and location on the FPGA. Furthermore, the BIST

hardware overhead was very low: ranging between just 1 and 7 CLBs for all the

tests.

8.2 Future Work

Throughout this thesis, regularity of the FPGA structure was extensively exploited.

The implementation flow was highly regular as well and there is a high potential

for automating the process of FPGA testing.

Fig. 8.1 shows a rough overview of how FPGA testing could be completely auto-

mated based on concepts used or developed during this thesis. A possible CAD tool

could extract testability conditions from a CLB circuit netlist. The testability con-

ditions would then be minimized using the TC minimization algorithm presented

in Section 5.3. This step will require further research to be able to create TCs

configurable into pipelined arrays. The output of step 2 is a set of abstract descrip-

tions of the TCs which would be used to generate the actual circuit TC netlists and

bitstreams using a test template generation tool.

Conditions for
testability

Component
libraries: e.g.

LUT, MUX

CLB
netlist

Set of test
configurations

TC Minimization
(set-cover)

Test generation
tool

Testability
conditions
generator

TC netlists/
bitstreams

3

2

1

Figure 8.1: Block diagram of possible FPGA CAD test software

Steps 2 and 3 are already implemented within this thesis and it remains to link

them together. Step 1 still requires investigation. A CAD tool should be extensible

with component libraries that would include a description for logic subcomponents

and their interconnections together in a single slice.

8.2. Future Work 79

More immediate future work involves fault simulation to assess the coverage of

each TC accurately and quantify the implementation results. It is also worthwhile to

investigate the various advanced features in Virtex FPGAs of partial reconfiguration

and memory readback as they can optimize the critical FPGA test reconfiguration

time.

Appendix A

XDL Syntax

Listing A.1 demonstrates a small XDL code example that shows a logic slice placed

in CLB “CLBLM X24Y5” and more specifically in sliceL “SLICE X41Y5”. The

configuration string specifies the slice programming in full detail. A routed net is

also shown. The code is annotated with comments explaining basics about XDL

syntax

1 # The syntax for instances is:

2 # instance <name> <sitedef>, placed <tile> <site>, cfg <string> ;

3 # or

4 # instance <name> <sitedef>, unplaced, cfg <string> ;

5

6 inst "slice_example" "SLICEL",placed CLBLM_X24Y5 SLICE_X41Y5 ,

7 cfg " A5LUT:CY5A_rt.1:#LUT:O5=A5 A6LUT:CY6A_rt:#LUT:O6=~A6

8 ACY0::AX AFF:unit401.AFF:#LATCH AFFINIT::INIT0

9 AFFMUX::CY AFFSR::SRLOW AOUTMUX::O5 AUSED::#OFF

10 B5LUT:CY5B_rt.1:#LUT:O5=A5 B6LUT:CY6B_rt:#LUT:O6=~A6

11 BCY0::BX BFF:unit401.BFF:#LATCH BFFINIT::INIT0

12 BFFMUX::CY BFFSR::SRLOW BOUTMUX::O5 BUSED::#OFF

13 C5LUT:CY5C_rt.1:#LUT:O5=A4 C6LUT:CY6C_rt:#LUT:O6=~A6

14 CCY0::CX CEUSED::#OFF CFF:unit401.CFF:#LATCH

15 CFFINIT::INIT0 CFFMUX::CY CFFSR::SRLOW CLKINV::CLK

16 COUTMUX::O5 COUTUSED::#OFF CUSED::#OFF D5LUT::#LUT:O5=A4

17 D6LUT:CY6D_rt:#LUT:O6=~A6 DCY0::DX DFF:unit401.DFF:#LATCH

18 DFFINIT::INIT0 DFFMUX::CY DFFSR::SRLOW DOUTMUX::O5

19 DUSED::#OFF PRECYINIT::#OFF REVUSED::#OFF SRUSED::0

20 SYNC_ATTR::ASYNC"

21 ;

22

23 # The syntax for nets is:

24 # net <name> <type>,

25 # outpin <inst_name> <inst_pin>,

26 # inpin <inst_name> <inst_pin>,

27 # pip <tile> <wire0> <dir> <wire1> , # [<rt>]

28 # ;

29 #

30 # The <dir> token will be one of the following:

81

82 Appendix A. XDL Syntax

31 #

32 # Symbol Description

33 # ====== ==

34 # == Bidirectional, unbuffered.

35 # => Bidirectional, buffered in one direction.

36 # =- Bidirectional, buffered in both directions.

37 # -> Directional, buffered.

38 #

39 # No pips exist for unrouted nets.

40

41 net "example_net_name" ,

42 outpin "unit1" AQ ,

43 inpin "unit2" A3 ,

44 pip CLBLL_X34Y9 SITE_IMUX_B27 -> M_A3 ,

45 pip CLBLM_X33Y9 L_AQ -> SITE_LOGIC_OUTS0 ,

46 pip INT_X33Y9 LOGIC_OUTS0 -> ER2BEG1 ,

47 pip INT_X34Y9 ER2MID1 -> IMUX_B27 ,

48 ;

Listing A.1: XDL code example

Appendix B

Virtex-5 Interconnects

B.1 Pin Naming Conventions

Pin names are extensively used in XDL to represent a source or sink of an inter-

connect wire. The encoded information contains the pin position as well as wire

classification. That is, the pin name consists of the wire type, direction and which

terminal it is (for example, start, middle or end). In Virtex-5 FPGAs this applies

to the wire types pent and double.

The pin name consists of seven characters. The first two letters describe the

direction and they could be single directions such as north, south, east and west,

or they could be diagonal directions such as north-east, south-west and so forth.

For north-bound wires, for example, the direction could be north (NL or NR),

north-east (NE) or north-west (NW). The same is true for other directions.

The third character is a number describing the type of wire: 2 for double wires

and 5 for pent wires. This is followed by three letters stating the position of this

pin in the wire: beginning (BEG), middle (MID) and end (END). Finally, there is

a wire index to differentiate between different wires coming out of or going into the

same PSM.

An example is ”NW5BEG1”. This is the beginning pin of a pent wire going two

hops in the north direction until the middle connection then goes west and there

hops later connects its END pin. Its index is 1. This wire is illustrated in Fig. B.4.

B.2 Interconnect Illustrations

This section illustrates five types of interconnect wires found in the Virtex-5 FPGA:

global, long, pent, double and bounceacross.

Global and long lines are bidirectional and can broadcast signals to multiple

CLBs depending on the configuration. Pent, double and bounceacross wires are

unidirectional. Pent and double lines span five and two CLBs respectively. This

distance is the Manhattan distance from source to sink and they can be in any

direction. There is additionally an intermediate middle connection of distance 2

and 1 for pent and double wires respectively. A connection can either be established

from the beginning (BEG) terminal to this middle (MID) connection or to the final

(END) connection.

83

84 Appendix B. Virtex-5 Interconnects

20 Connections

Figure B.1: Virtex-5 global wires

4 connections

Figure B.2: Virtex-5 long wires

B.2. Interconnect Illustrations 85

Figure B.3: Virtex-5 pent wires

Figure B.4: Virtex-5 pent wires in diagonal connections

86 Appendix B. Virtex-5 Interconnects

Figure B.5: Virtex-5 double wires

Figure B.6: Virtex-5 double wires in diagonal connections

B.2. Interconnect Illustrations 87

Figure B.7: Virtex-5 double wires

Bibliography

[1] R. Koenig, L. Bauer, T. Stripf, M. Shafique, W. Ahmed, J. Becker, and

J. Henkel, “KAHRISMA: A Novel Hypermorphic Reconfigurable-Instruction-

Set Multi-grained-Array Architecture,” in Design, Automation and Test in

Europe (DATE), Mar. 2010, pp. 819 –824. (Cited on pages 1 and 73.)

[2] M. Bushnell and V. Agrawal, Eds., Essentials of Electronic Testing for Digital,

Memory, and Mixed-Signal VLSI Circuits, ser. Frontiers in Electronic Testing.

New York, NY, USA: Kluwer Academic Publishers, 2002, vol. 17. (Cited on

pages 2 and 51.)

[3] V. Betz, J. Rose, and A. Marquardt, Eds., Architecture and CAD for Deep-

Submicron FPGAs. Norwell, MA, USA: Kluwer Academic Publishers, 1999.

(Cited on pages 2, 6, 7 and 8.)

[4] J. Yao, B. Dixon, C. Stroud, and V. Nelson, “System-level Built-In Self-Test

of global routing resources in Virtex-4 FPGAs,” in Southeastern Symposium

on System Theory (SSST), Mar. 2009, pp. 29 –32. (Cited on pages 8, 25, 27,

28 and 64.)

[5] “Virtex-5 FPGA User Guide (UG190),” Xilinx, Inc., May 2010. (Cited on

pages xi, 8, 9, 10, 11, 25, 27, 35, 37 and 40.)

[6] “PlanAhead Software Tutorial, Overview of the Partial Reconfiguration Flow

(UG743),” Xilinx, Inc., Mar. 2011. (Cited on page 8.)

[7] “Configuration and Readback of Virtex FPGAs Using the JTAG Boundary-

Scan (XAPP139),” Xilinx, Inc., Feb. 2007. (Cited on pages 8 and 22.)

[8] “Virtex FPGA Series Configuration and Readback (XAPP138),” Xilinx, Inc.,

Mar. 2005. (Cited on pages 8 and 23.)

[9] “Virtex-5 FPGA Configuration User Guide (UG191),” Xilinx, Inc., Aug. 2010.

(Cited on page 8.)

[10] W. L. Huang, F. Meyer, and F. Lombardi, “Multiple fault detection in logic

resources of FPGAs,” in IEEE International Symposium on Defect and Fault

Tolerance in VLSI Systems, Oct. 1997, pp. 186 –194. (Cited on pages 15, 16

and 17.)

[11] W. Huang, M. Zhang, F. Meyer, and F. Lombardi, “A XOR-tree based tech-

nique for constant testability of configurable FPGAs,” in Sixth Asian Test

Symposium (ATS), Nov. 1997, pp. 248 –253. (Cited on pages 15, 16 and 17.)

89

90 Bibliography

[12] C. Stroud, S. Konala, P. Chen, and M. Abramovici, “Built-in self-test of logic

blocks in FPGAs (Finally, a free lunch: BIST without overhead!),” in VLSI

Test Symposium, May 1996, pp. 387 –392. (Cited on pages 15, 16, 17 and 22.)

[13] M. Renovell, “SRAM-based FPGAs: a structural test approach,” in XI Brazil-

ian Symposium on Integrated Circuit Design, Oct. 1998, pp. 67 –72. (Cited on

pages 15, 17, 18, 19, 22, 33 and 50.)

[14] M. Renovell, J. Portal, J. Figueras, and Y. Zorian, “Test pattern and test

configuration generation methodology for the logic of RAM-based FPGA,”

in Sixth Asian Test Symposium (ATS), Nov. 1997, pp. 254 –259. (Cited on

pages 15, 17 and 18.)

[15] M. Renovell, J. Portal, J. Figueras, and Y. Zorian, “SRAM-based FPGA’s:

testing the LUT/RAM modules,” in International Test Conference (ITC), Oct.

1998, pp. 1102 –1111. (Cited on pages 15, 17, 18 and 19.)

[16] M. Renovell, J. Portal, J. Figueras, and Y. Zorian, “RAM-based FPGAs: a

test approach for the configurable logic,” in Design, Automation and Test in

Europe (DATE), Feb. 1998, pp. 82 –88. (Cited on pages 15, 17, 18 and 19.)

[17] M. Renovell and Y. Zorian, “Different experiments in test generation for XIL-

INX FPGAs,” in International Test Conference (ITC), 2000, pp. 854 –862.

(Cited on pages 15 and 17.)

[18] C. Stroud, E. Lee, S. Konala, and M. Abramovici, “Using ILA testing for

BIST in FPGAs,” in International Test Conference (ITC), Oct. 1996, pp. 68

–75. (Cited on pages 15 and 21.)

[19] E. Atoofian and Z. Navabi, “A BIST architecture for FPGA look up table

testing reduces reconfigurations,” in Twelfth Asian Test Symposium (ATS),

Nov. 2003, pp. 84 – 89. (Cited on pages 15, 21 and 22.)

[20] C. Metra, G. Mojoli, S. Pastore, D. Salvi, and G. Sechi, “Novel technique for

testing FPGAs,” in Design, Automation and Test in Europe (DATE), Feb.

1998, pp. 89 –94. (Cited on pages 15, 21 and 46.)

[21] W. K. Huang, F. Meyer, X.-T. Chen, and F. Lombardi, “Testing configurable

LUT-based FPGA’s,” IEEE Transactions on Very Large Scale Integration

(VLSI) Systems, vol. 6, no. 2, pp. 276 –283, Jun. 1998. (Cited on pages 15, 19,

20 and 21.)

[22] S. Dhingra, “Built-in Self-Test of Logic Resources in Field Programmable Gate

Arrays using Partial Reconfiguration,” Master’s thesis, Auburn University,

Aug. 2006. (Cited on pages 15 and 23.)

[23] Y. Liao, P. Li, A. Ruan, W. Li, and W. Li, “Full coverage manufacturing

testing for SRAM-based FPGA,” in International Symposium on Integrated

Circuits (ISIC), Dec. 2009, pp. 478 –481. (Cited on page 19.)

Bibliography 91

[24] A. Friedman, “Easily Testable Iterative Systems,” IEEE Transactions on Com-

puters, vol. C-22, no. 12, pp. 1061 – 1064, Dec. 1973. (Cited on pages 21, 46

and 47.)

[25] J. Yao, “Built-in Self-Test of Global Routing Resources in Virtex-4 FPGAs,”

Master’s thesis, Auburn University, Aug. 2009. (Cited on pages 23, 27 and 28.)

[26] B. Dixon, “Built-in Self-Test of Programmable Interconnect in Field Pro-

grammable Gate Arrays,” Master’s thesis, Auburn University, Dec. 2008.

(Cited on pages 23, 27 and 28.)

[27] M. Renovell, J. Portal, J. Figueras, and Y. Zorian, “Test configuration mini-

mization for the logic cells of SRAM-based FPGAs: a case study,” in European

Test Workshop, 1999, pp. 146 –151. (Cited on pages 23, 24, 49 and 54.)

[28] M. Renovell, J. Portal, J. Figueras, and Y. Zorian, “Testing the interconnect

of RAM-based FPGAs,” IEEE Design Test of Computers, vol. 15, no. 1, pp.

45 –50, Jan.-Mar. 1998. (Cited on pages 25, 26 and 27.)

[29] M. Renovell, J. Portal, J. Figueras, and Y. Zorian, “SRAM-based FPGA’s:

testing the interconnect/logic interface,” in Seventh Asian Test Symposium

(ATS), Dec. 1998, pp. 266 –271. (Cited on pages 25 and 26.)

[30] M. Renovell, J. Portal, J. Figueras, and Y. Zorian, “Testing the configurable

interconnect/logic interface of SRAM-based FPGA’s,” in Design, Automation

and Test in Europe (DATE), 1999, pp. 618 –622. (Cited on pages 25 and 26.)

[31] C. Stroud, S. Wijesuriya, C. Hamilton, and M. Abramovici, “Built-in self-test

of FPGA interconnect,” in International Test Conference (ITC), Oct. 1998,

pp. 404 –411. (Cited on pages 25, 26 and 27.)

[32] S. McCracken and Z. Zilic, “FPGA test time reduction through a novel

interconnect testing scheme,” in Proceedings of the 2002 ACM/SIGDA tenth

international symposium on Field-programmable gate arrays, ser. FPGA

’02. New York, NY, USA: ACM, 2002, pp. 136–144. [Online]. Available:

http://doi.acm.org/10.1145/503048.503069 (Cited on pages 25, 26 and 27.)

[33] S.-J. Wang and C.-N. Huang, “Testing and diagnosis of interconnect structures

in FPGAs,” in Seventh Asian Test Symposium (ATS), Dec. 1998, pp. 283 –287.

(Cited on pages 25, 26 and 27.)

[34] M. Niamat, A. Sahni, and M. Jamali, “A built in self test scheme for automatic

interconnect fault diagnosis in multiple and single FPGA systems,” in Midwest

Symposium on Circuits and Systems (MWSCAS), Aug. 2007, pp. 229 –232.

(Cited on pages 25, 26 and 27.)

[35] D. Fernandes and I. Harris, “Application of built in self-test for interconnect

testing of FPGAs,” in International Test Conference (ITC), vol. 1, Oct. 2003,

pp. 1248 – 1257. (Cited on pages 28, 29 and 30.)

http://doi.acm.org/10.1145/503048.503069

92 Bibliography

[36] M. Tahoori and S. Mitra, “Application-independent testing of FPGA intercon-

nects,” IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems, vol. 24, no. 11, pp. 1774 – 1783, Nov. 2005. (Cited on pages 29

and 30.)

[37] C. Giasson and X. Sun, “Modeling the interconnects of Xilinx Virtex FPGAs

and derivation of their test configurations,” in Canadian Conference on Elec-

trical and Computer Engineering, vol. 2, May 2004, pp. 831 – 834 Vol.2. (Cited

on pages 30 and 31.)

[38] W. H. Kautz, “Testing for faults in combinational cellular logic arrays,”

in Proceedings of the 8th Annual Symposium on Switching and Automata

Theory (SWAT), ser. FOCS ’67. Washington, DC, USA: IEEE Computer

Society, 1967, pp. 161–174. [Online]. Available: http://dx.doi.org/10.1109/

FOCS.1967.33 (Cited on pages 33, 46 and 47.)

[39] M. Psarakis, D. Gizopoulos, and A. Paschalis, “Test Generation and Fault

Simulation for Cell Fault Model using Stuck-at Fault Model based Test

Tools,” Journal of Electronic Testing, vol. 13, pp. 315–319, Dec. 1998.

[Online]. Available: http://dx.doi.org/10.1023/A:1008389920806 (Cited on

pages 33 and 34.)

[40] E. Bareǐsa, V. Jusas, K. Motiejūnas, and R. Šeinauskas, “BLACK BOX FAULT

MODELS,” Information Technology and Control, vol. 35, pp. 177–186, 2006.

(Cited on page 33.)

[41] E. Bareǐsa, V. Jusas, K. Motiejūnas, and R. Šeinauskas, “The Realization-

Independent Testing Based on the Black Box Fault Models,” Informatica,

vol. 16, pp. 19–36, Jan. 2005. [Online]. Available: http://portal.acm.org/

citation.cfm?id=1413769.1413771 (Cited on page 33.)

[42] A. Van De Goor, “Using march tests to test SRAMs,” IEEE Design Test of

Computers, vol. 10, no. 1, pp. 8 –14, Mar. 1993. (Cited on pages 36, 37 and 51.)

[43] S. Makar and E. McCluskey, “Functional tests for scan chain latches,” in Inter-

national Test Conference (ITC), Oct. 1995, pp. 606 –615. (Cited on pages 50

and 54.)

[44] J.-B. Note and E. Rannaud, “From the bitstream to the netlist,” in Proceedings

of the 16th international ACM/SIGDA symposium on Field programmable

gate arrays, ser. FPGA ’08. New York, NY, USA: ACM, 2008, pp. 264–264.

[Online]. Available: http://doi.acm.org/10.1145/1344671.1344729 (Cited on

page 67.)

[45] C. Lavin, M. Padilla, P. Lundrigan, B. Nelson, and B. Hutchings, “Rapid pro-

totyping tools for FPGA designs: RapidSmith,” in International Conference

on Field-Programmable Technology (FPT), Dec. 2010, pp. 353 –356. (Cited on

page 68.)

http://dx.doi.org/10.1109/FOCS.1967.33
http://dx.doi.org/10.1109/FOCS.1967.33
http://dx.doi.org/10.1023/A:1008389920806
http://portal.acm.org/citation.cfm?id=1413769.1413771
http://portal.acm.org/citation.cfm?id=1413769.1413771
http://doi.acm.org/10.1145/1344671.1344729

Bibliography 93

[46] “FPGA Editor Software Manual v13.1,” Xilinx, Inc., Jan. 2011. (Cited on

page 73.)

Declaration - Erklärung

Declaration

This is to certify that:

i. The thesis comprises only my original work towards the master degree

ii. Due acknowledgment has been made in the text to all other material used

Mohamed Abdelfattah

31 August 2011

Erklärung

Hiermit versichere ich, diese Arbeit selbständig verfasst und nur die angegebenen

Quellen benutzt zu haben.

Mohamed Abdelfattah

31 August 2011

95

	Abstract
	List of Figures
	List of Tables
	List of Abbreviations
	1 Introduction
	1.1 Motivation and Objectives
	1.2 Reliability Threat
	1.3 Thesis Organization

	2 Background
	2.1 FPGA Overview
	2.1.1 FPGA Architecture
	2.1.2 Configurable Logic Blocks
	2.1.3 Switch Matrix and Interconnect

	2.2 Xilinx Virtex-5 FPGA
	2.2.1 CLB Architecture
	2.2.2 Programmable Routing Resources

	2.3 Built-In Self Test
	2.3.1 FPGA Testing
	2.3.2 Test Terminology

	3 State of the Art
	3.1 CLB Test Approaches
	3.1.1 CLB Test with Response Compaction
	3.1.2 Array-based CLB Test
	3.1.3 Memory Readback
	3.1.4 Test Configuration Minimization
	3.1.5 Summary of CLB Test Approaches

	3.2 Interconnect Test Approaches
	3.2.1 Basic Interconnect Testing
	3.2.2 Advanced Interconnect Testing

	4 Fault Model
	4.1 The Cell Fault Model
	4.1.1 Definition and Assumptions
	4.1.2 Example Fault List Derivation
	4.1.3 Lookup Table: LUT Mode Fault List

	4.2 Functional RAM Fault Model
	4.3 Functional Shift Register Fault Model
	4.3.1 Flip-Flop Fault List

	4.4 Stuck-At Faults
	4.5 Complete CLB Fault List

	5 CLB Test
	5.1 CLB Test Architecture
	5.1.1 Test Methodology
	5.1.2 BIST Architecture
	5.1.3 Testing Iterative Logic Arrays

	5.2 CLB Subcomponent Tests
	5.2.1 Lookup Table - LUT mode
	5.2.2 Lookup Table - SR mode
	5.2.3 Lookup Table - RAM mode
	5.2.4 Multiplexer
	5.2.5 Fast Carry Chain
	5.2.6 Latches

	5.3 Global CLB Test Optimization
	5.3.1 Generalization for CLBs
	5.3.2 Set-Cover Heuristic
	5.3.3 TC Optimization Shortcomings

	6 Interconnect Test
	6.1 Interconnect Test Architecture
	6.1.1 Generic Test Architecture
	6.1.2 Test Response Compaction
	6.1.3 Test Pattern Generator and Output Response Analyzer

	6.2 Local Router
	6.2.1 Routing Algorithm

	6.3 WUTs Selection
	6.3.1 Systematic WUTs Selection
	6.3.2 Automatic WUTs Selection

	7 Implementation and Results
	7.1 Design Tools
	7.1.1 Xilinx Design Language
	7.1.2 RapidSmith Java Framework

	7.2 CLB Testing
	7.2.1 CLB PRET Tool Flow
	7.2.2 CLB Test Results

	7.3 Interconnect Testing
	7.3.1 Interconnect PRET Tool Flow
	7.3.2 Interconnect Test Results

	8 Conclusion
	8.1 Summary and Main Contributions
	8.2 Future Work

	A XDL Syntax
	B Virtex-5 Interconnects
	B.1 Pin Naming Conventions
	B.2 Interconnect Illustrations

	Bibliography
	Declaration

