— Workshop on the Intersections of Computer Architecture and Reconfigurable Logic (CARL): Category 2 —

AUGMENTING FPGAS WITH EMBEDDED NETWORKS-ON-CHIP

Mohamed S. Abdelfattah and Vaughn Betz

Department of Electrical and Computer Engineering
University of Toronto, Toronto, ON, Canada
{mohamed,vaughn}@eecg.utoronto.ca

ABSTRACT

FPGAs are increasing in capacity, allowing the implementa-
tion of ever-larger systems with correspondingly increasing
bandwidth demands. Additionally, modern FPGAs are be-
coming a heterogeneous platform that includes many fast ded-
icated blocks such as processor cores, and high-speed 1/Os
such as DDR3 memory and PCle. It is becoming a challenge
to connect systems in these large heterogeneous FPGAs using
the existing low-level interconnect that consists of wires and
programmable multiplexers. We propose embedding a high-
bandwidth network on-chip (NoC) on future FPGAs to trans-
port data in large systems. Two embedded NoC types offer
different tradeoffs; mixed NoCs — that use embedded “hard”
routers and programmable “soft” links — have a configurable
topology, while hard NoCs — that consist of both hard routers
and hard links — are more efficient and faster. Both mixed and
hard NoCs demonstrate a significant advantage in both effi-
ciency and performance over soft NoCs that are traditionally
implemented on FPGAs; 20-23 x smaller, 5-6 x faster and 9-
11x lower power. This work summarizes our previous find-
ings that appeared in FPT 2012 and FPL 2013 [1, 2].

1. INTRODUCTION

Field programmable gate-arrays (FPGAs) are reconfigurable
computer chips used for a wide range of applications in-
cluding video broadcast, wireless communication and packet
processing for example. FPGAs consist of a mesh array of
hundreds-of-thousands of logic elements that can be con-
nected in many flexible ways using a reconfigurable inter-
connect. This FPGA interconnect consists of different-length
wires and programmable multiplexers; wires are stitched to-
gether using these multiplexers to create flexible connections
between any of the FPGA’s logic blocks or 1/Os.

1.1. Problems with Current FPGA Interconnect

While essential to FPGAs, this programmable interconnect is
facing many challenges:

1. Interconnect scaling: FPGA connections consist of a
number of wires and multiplexers; these multiplexers
are made from pass-transistors [3]. Both metal wires
and pass transistors are not scaling as well as logic tran-
sistors meaning that interconnect delay is accounting
for an ever-larger portion of a design’s critical path de-
lay. This poor delay scaling of FPGA interconnect is
thus limiting FPGA speed.

l

\ LD

DDRx Interfacé\‘ ‘

Compute
Module

PCle Interface-”

\

Fig. 1: A mesh NoC implemented on an FPGA. The example shows
one router connected to a compute module and three links connected
to each of the DDR and PCle interfaces.

2. Design hurdles: Poor interconnect scaling also makes
design more difficult. We cannot accurately predict
the delay of interconnect wires except at the very-last
stages of compilation (placement and routing). A de-
signer will often find that his/her design does not meet
its target clock frequency because of interconnect de-
lay, requiring him to go back and change the design (for
example insert pipeline stages in the interconnect) mul-
tiple times; a time- and effort-consuming process. Fur-
thermore, FPGA design tools need to configure each
and every interconnect multiplexer which slows down
compilation.

3. FPGA bandwidth demands: FPGAs now include many
on-chip dedicated (or “hard”) compute and memory
elements, and I/O interfaces and controllers. Exam-
ples are dedicated multiplication units, small block
RAMs and even complete processor cores. More im-
portantly, FPGAs include dedicated fast I/O modules
such as DDR3 memory controllers and PCle or Eth-
ernet transceivers. These dedicated blocks run much
faster than the FPGA logic, often 8 times faster in the
case of DDR3 memory for example. This requires a
very wide datapath (8 times wider than DDR3 width be-
cause it is 8 times slower) to be configured on the FPGA
to transport the immense bandwidth coming from off-
chip memory. This datapath is both difficult to de-
sign (for reasons mentioned in point 2) and uses much
FPGA logic and interconnect resources.

4. Modularity: The low-level abstraction of FPGA inter-
connect is a barrier to dividing a design into modules

— Workshop on the Intersections of Computer Architecture and Reconfigurable Logic (CARL): Category 2 —

for independent optimization and compilation. Modu-
larity can aid new FPGA domains such as partial recon-
figuration and help with parallel compilation of hard-
ware designs.

1.2. Proposed Solution: Embedded Networks-on-Chip

To tackle current interconnect problems we propose augment-
ing FPGAs with embedded Networks-on-Chip (NoCs) for
system-level interconnection. Our embedded NoC does not
rid the FPGA of its current interconnect, it augments it; the
situation is analogous to a growing metropolitan city. Small
roads and bridges are not sufficient to handle the city’s ever-
increasing traffic —we must have wide high-speed freeways to
move traffic efficiently. Similarly, we aim to embed an NoC
on the FPGA using dedicated (hard) logic thus making it fast
enough to transport high-bandwidth data streams across the
FPGA efficiently.

An NoC can be regarded as a network of pre-pipelined
interconnect since it consists of short connections between
pipelined routers. Because the timing properties of an em-
bedded NoC are well-known when the FPGA is implemented,
they ease many of the design hurdles imposed by poor inter-
connect scaling. With an NoC, fixed wiring between commu-
nicating modules is replaced by a network that routes packets
to and from those modules. This simultaneously improves
wire utilization and raises the level of abstraction, which fa-
cilitates modular design styles [4]. For instance, NoCs can
simplify partial reconfiguration. When swapping modules,
the newly configured module will only have to connect to an
NoC interface to communicate to any part of the FPGA in-
stead of having to connect each of its new wires in an already-
functioning FPGA.

Modules communicating via an NoC are timing-disjoint
which allows their independent synthesis, placement, routing,
and timing closure; these tasks can therefore be performed
in parallel, possibly by multiple designers. Communication
bandwidth requirements can then be used to determine the
optimum position in the network for each module. Dedi-
cated interfaces on the FPGA such as DDRx, PCle and gi-
gabit Ethernet operate at high clock frequencies and require
low latency, high bandwidth communication to various parts
of the chip. A high-performance embedded NoC is a good
match to these interfaces as it can distribute data throughout
the chip at similarly high rates without an excessive number
of wires. Of course, an embedded “hard” NoC also has area,
delay and power advantages over a conventional“soft” NoC
configured from FPGA fabric elements, but presents addi-
tional challenges in terms of how it can be integrated within
the FPGA fabric; we explore these questions in detail in this
work.

1.3. Prior Work

There is prior work both on soft:hard efficiency comparison
and on FPGA-based NoCs. A comparison of FPGAs and
ASICs (soft vs. hard) by Kuon and Rose is based on a set
of benchmarks with different logic/memory/multiplier ratios.
We perform a narrower but more detailed comparison based
on a high performance NoC router [5]. Most prior FPGA

B-Registers -©-LUTRAM

0.8 /
0.6

BRAM (9 kbit)

Width = 32 bits

T o
£
s /
v 04
<
i, A /
@ =

N Shal Al il el sl

0 10 20 30 40 50 60 70

Buffer Depth (Words)

Fig. 2: Variation of physical FPGA area of memory buffers using
three implementation alternatives.

NoC research aimed to build soft NoCs efficiently out of the
FPGA fabric. LiPar [6], NoCem [7] and CONNECT [8] are
three virtual channel (VC) NoCs implemented efficiently in
soft logic on FPGAs. There has been little work on embedded
NoCs. Francis and Moore suggest that a circuit-switched net-
work with time-division multiplexed links should be hardened
on the FPGA [9]. Goossens et al. propose use of a hardwired
NoC for both functional communication and FPGA configu-
ration programming [10]. Chung et al. present a program-
ming model that abstracts the distribution of data from ex-
ternal memory throughout the FPGA and mention that their
application could benefit from an embedded NoC [11].

Our work has focused on the implementation of NoCs on
FPGAs. First, we analyzed the detailed area and delay of
NoC components in [1, 12], then looked at complete embed-
ded NoC systems and analyzed their power and performance
in [2]. This paper presents a summary and discussion of our
findings thus far.

2. NETWORK ARCHITECTURE

NoCs consist of routers and links. Routers perform dis-
tributed buffering, arbitration and switching to decide how
data moves across a chip, and links are the physical wires that
carry data between routers. Additionally, embedded NoCs re-
quire a “fabric port” to connect an NoC to the FPGA fabric
as shown in Fig. 1. Unlike multiprocessor NoCs for instance,
we cannot tailor the NoC to a specific application because
the FPGA application is not known when manufacturing the
FPGA; we must design the NoC in such a way that it can
connect to any module configured onto the FPGA. We out-
line this key component, the “fabric port”, at the end of this
section after presenting the different embedded NoCs.

Both routers and links can be either “soft” or “hard”. Soft
implementation means configuring the NoC out of the con-
ventional FPGA fabric (logic blocks, etc..) while hard im-
plementation refers to embedding the NoC as unchangeable
logic on the FPGA chip. We therefore discuss three kinds of
NoCs: “soft NoCs” configured out of the FPGA’s soft logic
resources, “hard NoCs” implemented as dedicated unchange-
able logic, and “mixed NoCs” that include both hard and soft
components.

2.1. Soft NoCs: Soft Routers and Soft Links

Soft NoCs can be implemented on current FPGAs without
making any architectural changes to the FPGA. It is simply

— Workshop on the Intersections of Computer Architecture and Reconfigurable Logic (CARL): Category 2 —

Programmable (Soft)
Interconnect

Logic _{| M
Block [~

Router-52

Router or
iy fabric port

Fig. 3: Floor plan of a hard router with soft links embedded in the
FPGA fabric. Drawn to a realistic scale.

B
peedl| 70

Mesh Ring Butterfly

Fig. 4: Examples of different topologies that can be implemented
using the soft links in a mixed NoC.

the implementation of NoC hardware on FPGA fabric re-
sources such as logic blocks, small memory blocks and pro-
grammable interconnect. The advantage of soft NoCs lies
in their reconfigurability; only exactly what is needed can
be configured onto the FPGA. However, high-performance
NoCs such as the ones we aim to implement are both area-
and-power-inefficient and slow on FPGAs.

We make sure that our NoC hardware description lan-
guage (HDL) code targets the FPGA fabric resources effi-
ciently. A critical component of the virtual-channel routers
we use is the input buffers; they occupy a large fraction of the
total NoC area. On FPGAs, we can implement such buffers
using three different resource types:

1. Registers: There are many registers on the FPGA but
they are sparsely spaced; buffers created out of registers
are therefore very large.

2. LUTRAM: FPGA logic elements are created out of
lookup tables (LUTs) which are essentially small mem-
ories (~64 bits each). Multiple LUTs can be combined
and used as a small RAM memory.

3. BRAM: These are densely-packed block RAM
(BRAM) modules, typically 9 kbits each.

As Fig. 2 shows, we found that BRAM were most silicon-
area-efficient in implementing most buffers, even those of a
very small size [1]. We therefore use them in implementing
soft NoCs that are used to compare to the mixed and hard
NoCs.

2.2. Mixed NoCs: Hard Routers and Soft Links

In this NoC architecture, we embed hard routers on the FPGA
and connect them via the soft FPGA interconnect. Simi-
larly to logic blocks or block RAMs on the FPGA, a hard
router requires programmable multiplexers on each of its in-
puts and outputs to connect to the soft interconnect in a flexi-

Dedicated (Hard)
Interconnect

&

Logic ||
Block M
Router——=— e

El EiEE E]

Router
port

Fig. 5: Floor plan of a hard router with hard links embedded in the
FPGA fabric. Drawn to a realistic scale.

ble way. We connect the router to the interconnect fabric with
the same multiplexer flexibility as a logic block and we en-
sure that enough programmable interconnect wires intersect
its layout to feed all of the inputs and outputs. Fig. 3 shows
a detailed to-scale illustration of such an embedded router.
A 32-bit 2-VC hard router occupies the area equivalent to 9
logic blocks on Stratix-IIl FPGAs even after accounting for
the programmable multiplexers to connect to the FPGA inter-
connect [1, 12]. In comparison, soft routers occupy an area
equivalent to ~270 logic blocks (30x larger).

The speed of mixed NoCs is limited by the soft intercon-
nect as hard routers can operate at higher frequencies as we
show in Section 4. While this NoC achieves a major increase
in area-efficiency and performance versus a soft NoC, it re-
mains highly configurable by virtue of the soft links. The soft
interconnect can connect the routers together in any network
topology subject only to the limit that we cannot exceed the
router port count at FPGA fabrication time for our routers.
This includes implementing topologies that use only a subset
of the available routers or implementing two separate NoCs as
shown in Fig. 4. To accommodate different NoCs, routing ta-
bles inside the router control units are simply reprogrammed
to match the new topology.

2.3. Hard NoCs: Hard Routers and Hard Links

This NoC architecture involves hardening both the routers and
the links. Routers are connected to other routers using dedi-
cated hard links; however, routers still interface to the FPGA
through programmable multiplexers connected to the soft in-
terconnect. When using hard links, the NoC topology is no
longer configurable. However, the hard links save area (as
they require no multiplexers) and can run at higher speeds
than soft links, allowing the NoC to achieve the router’s maxi-
mum frequency. Drivers at the ends of dedicated wires charge
and discharge data bits onto the hard links as shown in Fig. 5.
A hard NoC’s speed (above 900 MHz) is beyond that of the
programmable clock networks on most FPGAs; accordingly
it also requires a dedicated clock network to be added to the
FPGA. Such a clock network is fast and very cheap in terms
of metal usage since it is not configurable and has only as
many endpoints as the number of routers in an NoC; typically
less than 64 nodes. In contrast, FPGAs have more than 16
configurable clock networks with ~600 endpoints each.

A hard NoC is almost completely disjoint from the FPGA

— Workshop on the Intersections of Computer Architecture and Reconfigurable Logic (CARL): Category 2 —

32
H 4+
128 2 Dual-Port FIFO 3 Ly
(3] @]
= S I €
© [
0 g
— 3 >
= 1'?0(:1\';:»(4 . g
z
Configurable WCLK NCLK
2-bit counter| 600 MHz 900 MHz

Fig. 6: Fabric port with configurable 4:1 time-domain multiplexing
logic. Example frequencies are annotated.

fabric, only connecting through router-to-fabric ports. This
makes it easy to use a separate power grid for the NoC with
a lower voltage than the nominal FPGA voltage. This is de-
sirable because we can trade excess NoC speed for power ef-
ficiency. The only added overhead is the area of the voltage
crossing circuitry at the router-to-fabric interfaces, and this is
minimal. We therefore explore hard NoCs both at the FPGA’s
nominal voltage (1.1 V for Stratix III) and low-power versions
at0.9 V.

2.4. “Fabric Port” — How FPGA NoCs are different

Although we can use most of the concepts of well-established
multiprocessor NoCs in designing embedded NoCs for FP-
GAs, there are a few key differences. We know little about
the final designs that will be implemented on the FPGA while
architecting it, and hence as we embed a system-level inter-
connect we cannot tailor it to one class of application; we
must over-provision our embedded interconnect to account
for any application that could fit on an FPGA. This is why
NoCs are of interest, and not other widely used interconnects
such as buses. NoCs conform well to the island-style mesh or-
ganization of the FPGA logic blocks unlike hierarchical buses
whose design involves assumptions about how modules are
floorplanned. Additionally, we must overprovision the NoCs
to be able to transport the maximum bandwidth of big FPGA
applications. To determine that, we compute the bandwidth of
the high-speed interfaces and controllers (e.g. DDR3, PCle,
Ethernet) present on modern FPGAs; these I/Os are crucial
because they are used in essentially all commercial FPGA
designs. Our embedded NoCs must therefore be capable of
distributing data from these interfaces throughout the FPGA.
Finally, we do not know the speed or data width of the end
applications during the manufacture of the FPGA; for that we
use a “fabric port” at the interface between NoC routers and
FPGA modules to bridge the frequency and data width be-
tween the two while maximizing NoC bandwidth.

The FPGA fabric uses multiple relatively slow (~100-
400 MHz) clocks [13], while the NoC runs on a single very
fast clock (~1 GHz) as we show in Section 3. To use the
NoC to efficiently connect FPGA fabric modules running at
different speeds, we fix the NoC frequency to its maximum
speed (which maximizes bandwidth without increasing area)
and use a fabric port to match the fabric bandwidth to the
NoC bandwidth. The FPGA fabric achieves high computation
bandwidth by using wide datapaths at low speeds, while the
NoC is faster and can have a smaller data width. This is why

Table 1: Summary of Soft (FPGA) vs. Hard (ASIC) router area,
delay and power ratios.

Module Area Delay Power
Input Module 17 29 10
Crossbar 85 4.4 64
VC Allocator 48 39 41
Switch Allocator 56 33 41
Output Module 39 34 16
Router 30 6.0 14
Links 9 24 14

we require both time-domain multiplexing (TDM) logic and a
clock crossing FIFO in fabric ports as shown in Fig. 6; we per-
form both width adaptation and clock crossing. The example
in Fig. 6 shows an FPGA module running at 150 MHz with a
data width of 128 bits. TDM logic first converts this into 32-
bit data width running at 150 M Hz x 4 =600 M H z, then a
dual-port FIFO crosses the clock domain to the 900 MHz NoC
clock. The dual-port FIFO is required to maintain the free-
dom of optimizing the fabric frequencies independently from
the NoC frequency; that is, the NoC frequency need not be a
multiple of the fabric frequency or vice versa. Note that the
TDM factor (4:1) and the clock speeds annotated on Fig. 6
are examples; the TDM factor can be decreased by config-
uring the counter (to implement 2:1 TDM for example), or
increased by augmenting the depicted circuit with more soft
logic, to implement 8:1 TDM if needed. For router outputs,
the same circuit is used with a demultiplexer instead of the
multiplexer.

3. NOC COMPONENT ANALYSIS

In this section we analyze NoC components when imple-
mented hard or soft; these are the building blocks used in the
analysis of complete soft, mixed and hard NoCs. For soft im-
plementation we use the largest Stratix III FPGA (EP3SL340)
and for hard implementation we use TSMC’s 65 nm ASIC
process technology. This allows a direct FPGA vs. ASIC
(soft vs. hard) comparison since Stratix III devices are man-
ufactured in the same 65 nm TSMC process [14]. We use
a high-performance packet switched router [15] in designing
our NoCs to keep up with the high-bandwidth and low-latency
demands of modern FPGAs. For details of the router microar-
chitecture, please see [1, 15].

3.1. Routers

We perform an analysis of router subcomponents and com-
pare the area, speed and power in Table 1. Routers used in this
study are packet-switched virtual-channel (VC) routers [1,
15]; they have 5 components: input modules, crossbar, out-
put modules, and switch and VC allocators.

Table 1 shows that there is a significant gap in efficiency
and performance between hard and soft components. Input
modules, which account for ~60% of router area have the
lowest area, delay and power gaps because its soft implemen-
tation includes efficient BRAM modules for memory buffers

— Workshop on the Intersections of Computer Architecture and Reconfigurable Logic (CARL): Category 2 —

as outlined in Section 2.2. Crossbars on the other hand had
the largest soft:hard gap. This is because crossbars consist of
multiplexers which are inefficient on FPGAs for various rea-
sons [1]. Their high demand for wiring causes many logic
blocks to be partially packed with “pieces” of a multiplexer.
Area-and-power hungry interconnect is used to connect those
pieces into a crossbar which reduces the efficiency of soft
crossbars compared to hard ones, and makes them consider-
ably slower as well.

Logic blocks on the FPGA contain both LUTs to imple-
ment logic gates, and flip flops for sequential elements; it is
therefore a waste of area when the registers are unused and
this makes the soft implementation area inefficient. We found
a direct correlation between the LUT-to-register ratio (1:1 on
Stratix III FPGAs) and the FPGA-to-ASIC (or soft-to-hard)
area gap. For the VC allocator the average LUT-to-register
ratio is 8:1 and the area gap is 48x, while the speculative
switch allocator has an average LUT-to-register ratio of 20:1
and the area gap is higher; approximately 56x. For output
modules the LUT-to-register ratio is 0.6:1 contributing to its
smaller area gap of 39 x when compared to the allocators.

Overall, routers are 30x smaller, 6 x faster and use 14 x
less power when implemented hard rather than soft [1, 2, 12]
— the case for hardening NoC routers is therefore compelling
which motivates our mixed and hard NoCs.

3.2. Links

Soft wires connect via multiplexers which increases their ca-
pacitive and resistive loading, making them slower and more
power hungry. However, these multiplexers allow the soft in-
terconnect to create different topologies between routers, and
enables the reuse of the metal resources by other FPGA logic
when unused by the NoC. We lose this reconfigurability with
hard wires but they are, on average, 9x smaller, 2.4 x faster
and consume 1.4 less power than soft wires as shown in Ta-
ble 1.

4. SYSTEM-LEVEL ANALYSIS

In this section we analyze complete mixed/hard NoC systems
for FPGAs.! We therefore quantify the area and power over-
head of these NoCs as a fraction of the available FPGA area
and power budgets. We also compare the raw efficiency of
different NoC types to conventional point-to-point links im-
plemented on FPGAs; the simplest form of FPGA intercon-
nect.

4.1. NoC Systems Comparison

There is a large area difference between soft NoCs and em-
bedded (mixed/hard) NoCs; the area gap equals 20x and 23
for hard and mixed NoCs respectively as shown in Table 2.
Additionally, both the performance and power differences are
considerable; mixed and hard NoCs are 5-6x faster and 9-
11 x lower power. We study 64-node examples of these NoCs
in Fig. 7 to put these differences in perspective.

To access and visualize our complete area/delay/power results, please
visit: www.eecg.utoronto.ca/~mohamed/noc_designer.html

Table 2: Efficiency and performance of mixed and hard NoCs, com-
pared to soft NoCs.

NoC Area Delay Power
Soft 1x Ix 1x
Mixed 20x smaller 5x faster 9x lower
Hard 23x smaller 6x faster 11x lower
FPGA Core — Stratix IIl (EP35L340)
o Area =412 mm’
e Dynamic Power Budget = 17.4 W
Soft NoC
e 64 nodes, 32 bits, 2 VCs
o Area = 270 mm* (66%))
o Frequency = 167 MHz Mixed NoC
o Bandwidth = 54 GB/s ® 64 nodes, 32 bits, 2 VCs
o Max. Power = 5.14 W (30%) * Area =16 mm’ (3.9%)
e Frequency = 730 MHz
e Bandwidth = 238 GB/s
® Max. Power =2.47 W (14%)
Hard NoC
e 64 nodes, 32 bits, 2 VCs
o Area = 13 mm’(3.1%)
| e Frequency = 943 MHz
— . Bandwidth = 307 GB/s

® Max. Power = 2.67 W (15%)

Fig. 7: A to-scale illustration of the areas of 64-node NoCs relative
to the largest Stratix III FPGA device. NoC properties and metrics
are annotated on the figure.

Fig. 7 shows the relative areas of different NoC types and
the largest 65-nm Stratix III FPGA device. The figure also
shows how much of a large FPGA each NoC type consumes.
Soft NoCs are prohibitively large. A 64-node version uses
most of the FPGA area; this is 66% of the entire FPGA core
area. In addition, a soft NoC cannot operate at high frequen-
cies thus limiting total NoC bandwidth to tens of gigabytes
per second (54 GB/s). This explains why soft NoCs have not
been adopted in mainstream FPGA applications; they are very
inefficient and low-performance.

On the other hand, embedded (mixed/hard) NoCs are
small and fast. The same 64-node NoC, when implemented
using hard routers and hard links occupies only 13mm? (3%
of the FPGA) and its higher frequency boosts its bandwidth
to the hundreds of gigabytes per second (307 GB/s). If a soft
NoC were required to provide that amount of aggregate band-
width, it would not fit on the Stratix III FPGA device.

We see the same trend with power. Soft NoCs dissipate
~9 W for each 100 GB/s of bandwidth transported by the
NoC, while embedded NoCs only require ~1 W per 100 GB/s.
The large efficiency and performance gains achieved by hard-
ening NoC components motivates the implementation of em-
bedded NoCs onto modern FPGAs to implement system-level
communication. Embedded NoCs support more than enough
bandwidth to transport high-speed data from fast I/Os across
the FPGA efficiently. For instance, if we were to transport the
maximum theoretical bandwidth of a 64-bit 933 MHz DDR3
memory and PCIe Gen3 x8 transceivers (2 of the fastest I/Os
connected to FPGAs) we would require a total bandwidth of
~126 GB/s which is well within the limits of our embedded
NoCs [2].

www.eecg.utoronto.ca/~mohamed/noc_designer.html

— Workshop on the Intersections of Computer Architecture and Reconfigurable Logic (CARL): Category 2 —

Table 3: Raw efficiency of different NoCs and conventional FPGA
point-to-point links.

Energy per Data Area per Bandwidth
P2P Links 4.73 mJ/GB 8.8 mm?/TBps
Soft 94.5 mJ/GB 4960 mm?/TBps
Mixed 10.4 mJ/GB 59.4 mm?/TBps
Hard 8.68 mJ/GB 36.8 mm?/TBps
HardOptimized 4.47 mJ/GB 23.1 mm?/TBps

Please see [2, 12] for a more thorough study and methodology.

4.2. FPGA Area and Power Budgets for NoCs

We anticipate choosing embedded NoCs that provide 200-
300 GB/s of bandwidth, similar to the 64-node NoCs that we
show in Fig. 7. As such, we quantify the area and power bud-
gets of these NoCs as a percentage of the total available FPGA
area and power. We found that embedded (mixed/hard) NoCs
only require 3-4% of the FPGA core area, compared to 66%
for soft. For power, ~15% of the typical device power budget
was sufficient to support 230-300 GB/s of bandwidth in the
case of mixed and hard NoCs. On the other hand, soft NoCs
that provide the same bandwidth are impossible to implement
on FPGAs as they would require ~24 W; 40% more than the
typical dynamic power budget of a large FPGA. Not to men-
tion that their area would also be too large to implement on
our example FPGA device.

4.3. Embedded NoCs vs. Point-to-Point Interconnect

Currently I/O interfaces are connected to FPGA applications
not using soft NoCs, but instead using soft buses that are con-
structed out of multiplexers and arbiters that use the FPGA
fabric elements. These soft buses are tailored to the exact re-
quirements of the application running on the FPGA and hence
make use of the FPGA’s reconfigurability. A meaningful com-
parison would then be to compare these tailored soft buses —
used to connect large systems — to our embedded NoCs since
they provide an alternative interconnection solution. Indeed
this efficiency vs. configurability comparison is the next log-
ical step, and this constitutes our current and future work.
We started by looking at the raw efficiency of our NoCs,
and by comparing this to the raw efficiency of interconnect
that can be configured out of current FPGAs. As mentioned,
soft buses are typically configured onto FPGAs to intercon-
nect systems — we defer that comparison to future work. An-
other simpler form of interconnect is point-to-point (P2P)
links; this is interconnect that consists mainly of FPGA wires
that connects two modules together. We define our raw ef-
ficiency metrics as normalized area and power per unit of
bandwidth; that means, we compute how much energy is dis-
sipated for each gigabyte transported on different intercon-
nects, and we measure how much area is spent with each kind
of interconnect to support one gigabyte-per-second of band-
width [2, 12]. These metrics can compare different kinds of
interconnect while abstracting their implementation details.
Table 3 offers a summarized comparison; the NoCs have
the same properties as annotated in Fig. 7, and the P2P links

provide similar bandwidth and are constructed out of a mix-
ture of FPGA wires that are the length of one NoC link. It is
apparent from the table that there is a huge difference between
soft NoCs and everything else; however, it is more interesting
to compare embedded NoCs to the P2P links. Even though
embedded NoCs can implement more complex forms of on-
chip communication, their raw efficiency comes close to soft
P2P links. The hard NoC we present here is only twice as
power hungry as P2P links, and we have shown that for higher
bandwidth and with different design choices, low-power hard
NoCs can even reach 4.47 mJ/GB equaling a P2P link. Sim-
ilarly, hard NoCs can be as area-efficient as 23.1 mm?2/TBps
which is a very low area overhead for the switching capabil-
ities offered; arbitration, buffering and virtual channels. The
results are very promising; even when comparing with the
simplest form of interconnect, P2P links that are limited in
capability and just consist of wires, embedded NoCs score
similar efficiency metrics. We therefore believe that embed-
ded NoCs will be more efficient than any other more complex
interconnect such as soft buses implemented on FPGAs.

5. FUTURE WORK

Our immediate future work will be to do more in-depth com-
parisons and case studies of FPGA efficiency and perfor-
mance. For instance, how do embedded NoCs compare to a
soft (tailored) bus-based interconnect that is used to distribute
DDR3 memory data across an FPGA? Other microbench-
marks and application studies will help quantify the gain of
embedded NoCs and guide its design choices.

REFERENCES

[1] M. S. Abdelfattah and V. Betz, “Design Tradeoffs for Hard and Soft
FPGA-based Networks-on-Chip,” FPT, 2012, pp. 95-103.

[2] M. S. Abdelfattah and V. Betz, “The Power of Communication:
Energy-Efficient NoCs for FPGAs,” FPL, 2013.

[3] D. Lewis and J. Chromczak, “Process technology implications for FP-
GAs (Invited Paper),” IEDM, 2012.

[4] W. Dally and B. Towles, “Route Packets, Not Wires: On-Chip Inter-
connection Networks,” DAC, 2001, pp. 684—689.

[5] I. Kuon and J. Rose, “Measuring the Gap Between FPGAs and ASICs,”
TCAD, vol. 26, no. 2, pp. 203-215, 2007.

[6] B. Sethuraman, et al., “LiPaR: A Light-Weight Parallel Router for
FPGA-based Networks-on-Chip,” GLSVLSI, 2005, pp. 452-457.

[7]1 G. Schelle and D. Grunwald, “Exploring FPGA network on chip imple-
mentations across various application and network loads,” FPL, 2008,
pp. 41-46.

[8] M. K. Papamichael and J. C. Hoe, “CONNECT: Re-Examining Con-
ventional Wisdom for Designing NoCs in the Context of FPGAs,”
FPGA, 2012, pp. 37-46.

[9] R.Francis and S. Moore, “Exploring Hard and Soft Networks-on-Chip
for FPGAs,” FPT, 2008, pp. 261-264.

[10] K. Goossens, et al., “Hardwired Networks on Chip in FPGAs to Unify
Functional and Configuration Interconnects,” NOCS, 2008, pp. 45-54.

[11] E.S. Chung, et al., “CoRAM: An In-Fabric Memory Architecture for
FPGA-based Computing,” FPGA, 2011, pp. 97-106.

[12] M. S. Abdelfattah and V. Betz, “Networks-on-Chip for FPGAs: Hard,
Soft or Mixed?” TRETS, 2013.

[13] M. Hutton, et al., “Efficient static timing analysis and applications us-
ing edge masks,” FPGA, 2005, pp. 174-183.

[14] Altera Corp., “Stratix III FPGA: Lowest Power, Highest Performance
65-nm FPGA,” Press Release, 2007.

[15] Daniel U. Becker, “Efficient Microarchitecture for Network-on-Chip
Router,” Ph.D. dissertation, Stanford University, 2012.

